These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 21775174)

  • 41. [Process of production and destruction of red blood cells and etiological classification of anemia].
    Miura Y
    Nihon Naika Gakkai Zasshi; 1990 May; 79(5):557-61. PubMed ID: 2380599
    [No Abstract]   [Full Text] [Related]  

  • 42. Mathematical analysis of bone marrow erythropoiesis: application to C3H mouse data.
    Mary JY; Valleron AJ; Croizat H; Frindel E
    Blood Cells; 1980; 6(2):241-62. PubMed ID: 7378594
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion.
    Falchi M; Varricchio L; Martelli F; Masiello F; Federici G; Zingariello M; Girelli G; Whitsett C; Petricoin EF; Moestrup SK; Zeuner A; Migliaccio AR
    Haematologica; 2015 Feb; 100(2):178-87. PubMed ID: 25533803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differentiation of chick blood island erythroblasts into erythrocytes and stability in long-term culture.
    Zagris N
    Exp Cell Biol; 1985; 53(4):233-9. PubMed ID: 4029479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Apoptotic mechanisms in the control of erythropoiesis.
    Testa U
    Leukemia; 2004 Jul; 18(7):1176-99. PubMed ID: 15208642
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Erythroid precursors from patients with low-risk myelodysplasia demonstrate ultrastructural features of enhanced autophagy of mitochondria.
    Houwerzijl EJ; Pol HW; Blom NR; van der Want JJ; de Wolf JT; Vellenga E
    Leukemia; 2009 May; 23(5):886-91. PubMed ID: 19148135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The majority of the in vitro erythroid expansion potential resides in CD34(-) cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples.
    van den Akker E; Satchwell TJ; Pellegrin S; Daniels G; Toye AM
    Haematologica; 2010 Sep; 95(9):1594-8. PubMed ID: 20378567
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors.
    Huang X; Shah S; Wang J; Ye Z; Dowey SN; Tsang KM; Mendelsohn LG; Kato GJ; Kickler TS; Cheng L
    Mol Ther; 2014 Feb; 22(2):451-463. PubMed ID: 24002691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Red blood cell generation by three-dimensional aggregate cultivation of late erythroblasts.
    Lee E; Han SY; Choi HS; Chun B; Hwang B; Baek EJ
    Tissue Eng Part A; 2015 Feb; 21(3-4):817-28. PubMed ID: 25314917
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield.
    Heideveld E; Masiello F; Marra M; Esteghamat F; Yağcı N; von Lindern M; Migliaccio AR; van den Akker E
    Haematologica; 2015 Nov; 100(11):1396-406. PubMed ID: 26294724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Erythropoietin-stimulated endothelial cells support erythroid cell differentiation of CD34(+) haematopoietic progenitors.
    Zaid T; Frömmel C; Lun A; Moldenhauer A
    Vox Sang; 2013 Oct; 105(3):253-8. PubMed ID: 23773054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of iron overload and chelation on erythroid differentiation.
    Taoka K; Kumano K; Nakamura F; Hosoi M; Goyama S; Imai Y; Hangaishi A; Kurokawa M
    Int J Hematol; 2012 Feb; 95(2):149-59. PubMed ID: 22193844
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large-scale in vitro production of red blood cells from human peripheral blood mononuclear cells.
    Heshusius S; Heideveld E; Burger P; Thiel-Valkhof M; Sellink E; Varga E; Ovchynnikova E; Visser A; Martens JHA; von Lindern M; van den Akker E
    Blood Adv; 2019 Nov; 3(21):3337-3350. PubMed ID: 31698463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors.
    Leberbauer C; Boulmé F; Unfried G; Huber J; Beug H; Müllner EW
    Blood; 2005 Jan; 105(1):85-94. PubMed ID: 15358620
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expansion of CD34+ cells on telomerized human stromal cells without losing erythroid-differentiation potential in a serum-free condition.
    Kobune M; Kawano Y; Kato J; Ito Y; Chiba H; Nakamura K; Fujimi A; Matsunaga T; Hamada H; Niitsu Y
    Int J Hematol; 2005 Jan; 81(1):18-25. PubMed ID: 15717683
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A simple method for enrichment of polychromatic erythroblasts from rat bone marrow, and their proliferation and maturation in vitro.
    Asano H; Deguchi Y; Kawamura S; Inaba M
    J Toxicol Sci; 2011 Aug; 36(4):435-44. PubMed ID: 21804307
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Association of the Degree of Erythroid Expansion and Maturation Arrest with the Clinical Severity of β0-Thalassemia/Hemoglobin E Patients.
    Suriyun T; Kaewsakulthong W; Khamphikham P; Chumchuen S; Hongeng S; Fucharoen S; Sripichai O
    Acta Haematol; 2021; 144(6):660-671. PubMed ID: 34535581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression of major blood group antigens on human erythroid cells in a two phase liquid culture system.
    Wada H; Suda T; Miura Y; Kajii E; Ikemoto S; Yawata Y
    Blood; 1990 Jan; 75(2):505-11. PubMed ID: 2295004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Erythropoiesis: a paradigm for the role of caspases in cell death and differentiation].
    Ribeil JA; Zermati Y; Vandekerckhove J; Dussiot M; Kersual J; Hermine O
    J Soc Biol; 2005; 199(3):219-31. PubMed ID: 16471262
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased oxidative metabolism is associated with erythroid precursor expansion in β0-thalassaemia/Hb E disease.
    Leecharoenkiat A; Wannatung T; Lithanatudom P; Svasti S; Fucharoen S; Chokchaichamnankit D; Srisomsap C; Smith DR
    Blood Cells Mol Dis; 2011 Oct; 47(3):143-57. PubMed ID: 21783389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.