These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 21775310)

  • 1. Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence.
    Kim DS; Hahn Y
    Bioinformatics; 2011 Sep; 27(18):2494-501. PubMed ID: 21775310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gains of ubiquitylation sites in highly conserved proteins in the human lineage.
    Kim DS; Hahn Y
    BMC Bioinformatics; 2012 Nov; 13():306. PubMed ID: 23157318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the phosphorylation sites of Mycobacterium tuberculosis serine/threonine protein kinases, PknA, PknD, PknE, and PknH by mass spectrometry.
    Molle V; Zanella-Cleon I; Robin JP; Mallejac S; Cozzone AJ; Becchi M
    Proteomics; 2006 Jul; 6(13):3754-66. PubMed ID: 16739134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways.
    Watanabe N; Arai H; Iwasaki J; Shiina M; Ogata K; Hunter T; Osada H
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11663-8. PubMed ID: 16085715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest.
    Fan W; Xu X; Shen Y; Feng H; Li A; Wang M
    Amino Acids; 2014 Apr; 46(4):1069-78. PubMed ID: 24452754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four distinct cyclin-dependent kinases phosphorylate histone H1 at all of its growth-related phosphorylation sites.
    Swank RA; Th'ng JP; Guo XW; Valdez J; Bradbury EM; Gurley LR
    Biochemistry; 1997 Nov; 36(45):13761-8. PubMed ID: 9374852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterizations of phosphorylatable residues in transmembrane proteins from
    Xue B; Uversky VN
    Intrinsically Disord Proteins; 2013; 1(1):e25713. PubMed ID: 28516016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of human-specific transcript variants induced by DNA insertions in the human genome.
    Kim DS; Hahn Y
    Bioinformatics; 2011 Jan; 27(1):14-21. PubMed ID: 21037245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bioinformatics-based approach for the prediction and identification of novel proteins potentially involved in phosphorylation signalling pathways.
    Ahn SK
    Int J Mol Med; 2003 Sep; 12(3):391-7. PubMed ID: 12883657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the evolutionary expansion of phosphorylation signaling networks using comparative phosphomotif analysis.
    Yoshizaki H; Okuda S
    BMC Genomics; 2014 Jul; 15(1):546. PubMed ID: 24981518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression.
    Hall C; Nelson DM; Ye X; Baker K; DeCaprio JA; Seeholzer S; Lipinski M; Adams PD
    Mol Cell Biol; 2001 Mar; 21(5):1854-65. PubMed ID: 11238922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants.
    Flaherty DB; Soria JP; Tomasiewicz HG; Wood JG
    J Neurosci Res; 2000 Nov; 62(3):463-72. PubMed ID: 11054815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of kinase-specific phosphorylation sites through an integrative model of protein context and sequence.
    Patrick R; Horin C; Kobe B; Cao KA; Bodén M
    Biochim Biophys Acta; 2016 Nov; 1864(11):1599-608. PubMed ID: 27507704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparin, a powerful inhibition of type II casein kinases, stimulates the phosphorylation of some protein substrates by the catalytic subunit of cAMP-dependent protein kinase.
    Meggio F; Donella-Deana A; Pinna LA
    Biochem Int; 1983 Mar; 6(3):427-32. PubMed ID: 6591921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chimpanzee, orangutan, mouse, and human cell cycle promoters exempt CCAAT boxes and CHR elements from interspecies differences.
    Müller GA; Heissig F; Engeland K
    Mol Biol Evol; 2007 Mar; 24(3):814-26. PubMed ID: 17205977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional divergence and evolutionary turnover in mammalian phosphoproteomes.
    Freschi L; Osseni M; Landry CR
    PLoS Genet; 2014 Jan; 10(1):e1004062. PubMed ID: 24465218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative kinomics of human and chimpanzee reveal unique kinship and functional diversity generated by new domain combinations.
    Anamika K; Martin J; Srinivasan N
    BMC Genomics; 2008 Dec; 9():625. PubMed ID: 19105813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of phosphorylatable chimeric monoclonal antibody CC49 with a casein kinase I recognition site.
    Lin L; Gillies SD; Schlom J; Pestka S
    Protein Expr Purif; 1999 Feb; 15(1):83-91. PubMed ID: 10024474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel network-based computational method to predict protein phosphorylation on tyrosine sites.
    Wang B; Wang M; Jiang Y; Sun D; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542005. PubMed ID: 26781824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of kinase-specific phosphorylation sites using conditional random fields.
    Dang TH; Van Leemput K; Verschoren A; Laukens K
    Bioinformatics; 2008 Dec; 24(24):2857-64. PubMed ID: 18940828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.