BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21775711)

  • 1. Bringing up the rear: new premotor interneurons add regional complexity to a segmentally distributed motor pattern.
    Wenning A; Norris BJ; Doloc-Mihu A; Calabrese RL
    J Neurophysiol; 2011 Nov; 106(5):2201-15. PubMed ID: 21775711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2983-91. PubMed ID: 17728387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heartbeat control in leeches. II. Fictive motor pattern.
    Wenning A; Hill AA; Calabrese RL
    J Neurophysiol; 2004 Jan; 91(1):397-409. PubMed ID: 13679405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2992-3005. PubMed ID: 17804574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A central pattern generator producing alternative outputs: temporal pattern of premotor activity.
    Norris BJ; Weaver AL; Morris LG; Wenning A; García PA; Calabrese RL
    J Neurophysiol; 2006 Jul; 96(1):309-26. PubMed ID: 16611849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals.
    Wenning A; Cymbalyuk GS; Calabrese RL
    J Neurophysiol; 2004 Jan; 91(1):382-96. PubMed ID: 13679406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase relationships between segmentally organized oscillators in the leech heartbeat pattern generating network.
    Masino MA; Calabrese RL
    J Neurophysiol; 2002 Mar; 87(3):1572-85. PubMed ID: 11877527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.
    García PS; Wright TM; Cunningham IR; Calabrese RL
    J Neurophysiol; 2008 Sep; 100(3):1354-71. PubMed ID: 18579654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of presynaptic activity and synaptic strength interact to produce motor output.
    Wright TM; Calabrese RL
    J Neurosci; 2011 Nov; 31(48):17555-71. PubMed ID: 22131417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in motor output and motor performance in a centrally generated motor pattern.
    Wenning A; Norris BJ; Doloc-Mihu A; Calabrese RL
    J Neurophysiol; 2014 Jul; 112(1):95-109. PubMed ID: 24717348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of intersegmental coordination in the leech heartbeat neuronal network.
    Hill AA; Masino MA; Calabrese RL
    J Neurophysiol; 2002 Mar; 87(3):1586-602. PubMed ID: 11877528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coping with variability in small neuronal networks.
    Calabrese RL; Norris BJ; Wenning A; Wright TM
    Integr Comp Biol; 2011 Dec; 51(6):845-55. PubMed ID: 21724619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns.
    Calabrese RL; Nadim F; Olsen OH
    J Neurobiol; 1995 Jul; 27(3):390-402. PubMed ID: 7673897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neuromuscular transform in a single segment of a segmented heart tube.
    Wenning A; Chang YR; Norris BJ; Calabrese RL
    J Neurophysiol; 2020 Sep; 124(3):914-929. PubMed ID: 32755357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator.
    Roffman RC; Norris BJ; Calabrese RL
    J Neurophysiol; 2012 Mar; 107(6):1681-93. PubMed ID: 22190622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina.
    Sakurai A; Gunaratne CA; Katz PS
    J Neurophysiol; 2014 Sep; 112(6):1317-28. PubMed ID: 24920032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity in the multifunctional buccal central pattern generator of Helisoma illuminated by the identification of phase 3 interneurons.
    Quinlan EM; Murphy AD
    J Neurophysiol; 1996 Feb; 75(2):561-74. PubMed ID: 8714635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator.
    Lawton KJ; Perry WM; Yamaguchi A; Zornik E
    J Neurosci; 2017 Mar; 37(12):3264-3275. PubMed ID: 28219984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.