These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21775725)

  • 1. Topological basis of epileptogenesis in a model of severe cortical trauma.
    Volman V; Sejnowski TJ; Bazhenov M
    J Neurophysiol; 2011 Oct; 106(4):1933-42. PubMed ID: 21775725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation.
    Volman V; Bazhenov M; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15402-7. PubMed ID: 21896754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling.
    González OC; Krishnan GP; Chauvette S; Timofeev I; Sejnowski T; Bazhenov M
    J Neurosci; 2015 Sep; 35(39):13448-62. PubMed ID: 26424890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic strength modulation after cortical trauma: a role in epileptogenesis.
    Avramescu S; Timofeev I
    J Neurosci; 2008 Jul; 28(27):6760-72. PubMed ID: 18596152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model.
    Bush PC; Prince DA; Miller KD
    J Neurophysiol; 1999 Oct; 82(4):1748-58. PubMed ID: 10515964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noradrenergic modulation of epileptiform bursting and synaptic plasticity in the dentate gyrus.
    Stanton PK
    Epilepsy Res Suppl; 1992; 7():135-50. PubMed ID: 1334659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation.
    Kozlov A; Kotaleski JH; Aurell E; Grillner S; Lansner A
    J Comput Neurosci; 2001; 11(2):183-200. PubMed ID: 11717534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex.
    Houweling AR; Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    Cereb Cortex; 2005 Jun; 15(6):834-45. PubMed ID: 15483049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.
    Hellyer PJ; Jachs B; Clopath C; Leech R
    Neuroimage; 2016 Jan; 124(Pt A):85-95. PubMed ID: 26348562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic and synaptic mechanisms of seizure generation and epileptogenesis.
    González OC; Krishnan GP; Timofeev I; Bazhenov M
    Neurobiol Dis; 2019 Oct; 130():104485. PubMed ID: 31150792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA-receptor inhibition restores Protease-Activated Receptor 1 (PAR1) mediated alterations in homeostatic synaptic plasticity of denervated mouse dentate granule cells.
    Becker D; Ikenberg B; Schiener S; Maggio N; Vlachos A
    Neuropharmacology; 2014 Nov; 86():212-8. PubMed ID: 25086265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex.
    Fröhlich F; Bazhenov M; Sejnowski TJ
    J Neurosci; 2008 Feb; 28(7):1709-20. PubMed ID: 18272691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth rules for the repair of Asynchronous Irregular neuronal networks after peripheral lesions.
    Sinha A; Metzner C; Davey N; Adams R; Schmuker M; Steuber V
    PLoS Comput Biol; 2021 Jun; 17(6):e1008996. PubMed ID: 34061830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the structure of ictal events in vitro.
    Traub RD; Borck C; Colling SB; Jefferys JG
    Epilepsia; 1996 Sep; 37(9):879-91. PubMed ID: 8814102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterosynaptic metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus.
    Le Ray D; Fernández De Sevilla D; Belén Porto A; Fuenzalida M; Buño W
    Hippocampus; 2004; 14(8):1011-25. PubMed ID: 15390171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible role of cooperative action of NMDA receptor and GABA function in developmental plasticity.
    Kubota S; Kitajima T
    J Comput Neurosci; 2010 Apr; 28(2):347-59. PubMed ID: 20107883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic scaling of excitability in recurrent neural networks.
    Remme MW; Wadman WJ
    PLoS Comput Biol; 2012; 8(5):e1002494. PubMed ID: 22570604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.