BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21775965)

  • 1. Screening assay for oxidative stress in a feline astrocyte cell line, G355-5.
    Testa MP; Alvarado O; Wournell A; Lee J; Guilford FT; Henriksen SH; Phillips TR
    J Vis Exp; 2011 Jul; (53):e2841. PubMed ID: 21775965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2',7'-dichlorofluorescin diacetate (DCFDA) assay.
    Figueroa D; Asaduzzaman M; Young F
    J Pharmacol Toxicol Methods; 2018; 94(Pt 1):26-33. PubMed ID: 29630935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury.
    Shanker G; Aschner JL; Syversen T; Aschner M
    Brain Res Mol Brain Res; 2004 Sep; 128(1):48-57. PubMed ID: 15337317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy.
    Kristiansen KA; Jensen PE; Møller IM; Schulz A
    Physiol Plant; 2009 Aug; 136(4):369-83. PubMed ID: 19493304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying ROS levels using CM-H
    Oparka M; Walczak J; Malinska D; van Oppen LMPE; Szczepanowska J; Koopman WJH; Wieckowski MR
    Methods; 2016 Oct; 109():3-11. PubMed ID: 27302663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified fixed staining method for the simultaneous measurement of reactive oxygen species and oxidative responses.
    Shen WJ; Hsieh CY; Chen CL; Yang KC; Ma CT; Choi PC; Lin CF
    Biochem Biophys Res Commun; 2013 Jan; 430(1):442-7. PubMed ID: 23178299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes.
    Shanker G; Syversen T; Aschner JL; Aschner M
    Brain Res Mol Brain Res; 2005 Jun; 137(1-2):11-22. PubMed ID: 15950756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of ROS using oxidized DCFDA and flow-cytometry.
    Eruslanov E; Kusmartsev S
    Methods Mol Biol; 2010; 594():57-72. PubMed ID: 20072909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sea urchin spermatozoa generate at least two reactive oxygen species; the type of reactive oxygen species changes under different conditions.
    Kazama M; Hino A
    Mol Reprod Dev; 2012 Apr; 79(4):283-95. PubMed ID: 22328344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress.
    Kaur P; Aschner M; Syversen T
    Toxicology; 2007 Feb; 230(2-3):164-77. PubMed ID: 17169475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Medium-Throughput System for In Vitro Oxidative Stress Assessment in IPEC-J2 Cells.
    Ayuso M; Van Cruchten S; Van Ginneken C
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual phases of respiration chain defect-augmented mROS-mediated mCa 2+ stress during oxidative insult in normal and ρ 0 RBA1 astrocytes.
    Peng TI; Lin MS; Jou MJ
    Oxid Med Cell Longev; 2013; 2013():159567. PubMed ID: 23533684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3,5,4'-Trihydroxy-6,7,3'-trimethoxyflavone protects astrocytes against oxidative stress via interference with cell signaling and by reducing the levels of intracellular reactive oxygen species.
    Elmann A; Telerman A; Mordechay S; Erlank H; Rindner M; Ofir R; Kashman Y
    Neurochem Int; 2014 Dec; 78():67-75. PubMed ID: 25217804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A water-soluble fullerene vesicle alleviates angiotensin II-induced oxidative stress in human umbilical venous endothelial cells.
    Maeda R; Noiri E; Isobe H; Homma T; Tanaka T; Negishi K; Doi K; Fujita T; Nakamura E
    Hypertens Res; 2008 Jan; 31(1):141-51. PubMed ID: 18360029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effect of the octadecaneuropeptide on hydrogen peroxide-induced oxidative stress and cell death in cultured rat astrocytes.
    Hamdi Y; Masmoudi-Kouki O; Kaddour H; Belhadj F; Gandolfo P; Vaudry D; Mokni M; Leprince J; Hachem R; Vaudry H; Tonon MC; Amri M
    J Neurochem; 2011 Aug; 118(3):416-28. PubMed ID: 21599667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin on hydrogen peroxide-induced oxidative stress involves ROS/Ca2+ and Akt/Bcl-2 signaling pathways.
    Ramalingam M; Kim SJ
    Free Radic Res; 2014 Mar; 48(3):347-56. PubMed ID: 24286466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effect of a novel cystine C(60) derivative on hydrogen peroxide-induced apoptosis in rat pheochromocytoma PC12 cells.
    Hu Z; Guan W; Wang W; Huang L; Xing H; Zhu Z
    Chem Biol Interact; 2007 Apr; 167(2):135-44. PubMed ID: 17353010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer.
    Pogue AI; Jones BM; Bhattacharjee S; Percy ME; Zhao Y; Lukiw WJ
    Int J Mol Sci; 2012; 13(8):9615-9626. PubMed ID: 22949820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Troubleshooting the dichlorofluorescein assay to avoid artifacts in measurement of toxicant-stimulated cellular production of reactive oxidant species.
    Tetz LM; Kamau PW; Cheng AA; Meeker JD; Loch-Caruso R
    J Pharmacol Toxicol Methods; 2013; 67(2):56-60. PubMed ID: 23380227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autocrine C-peptide mechanism underlying INS1 beta cell adaptation to oxidative stress.
    Luppi P; Drain P
    Diabetes Metab Res Rev; 2014 Oct; 30(7):599-609. PubMed ID: 24459093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.