These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2177657)

  • 1. Characterisation of an IS1 induced mutation in the carboxy-terminal end of bacteriophage Mu transposase which affects several functional domains of the protein.
    Faelen M; Gama MJ; Toussaint A
    Biochimie; 1990 Sep; 72(9):697-701. PubMed ID: 2177657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of amber mutations in bacteriophage Mu transposase: a functional analysis of the protein.
    Desmet L; Faelen M; Gama MJ; Ferhat A; Toussaint A
    Mol Microbiol; 1989 Sep; 3(9):1145-58. PubMed ID: 2552260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A subsequence-specific DNA-binding domain resides in the 13 kDa amino terminus of the bacteriophage Mu transposase protein.
    Tolias PP; DuBow MS
    J Mol Recognit; 1989 Apr; 1(4):172-8. PubMed ID: 2561072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional domains of bacteriophage Mu transposase: properties of C-terminal deletions.
    Bétermier M; Alazard R; Lefrère V; Chandler M
    Mol Microbiol; 1989 Sep; 3(9):1159-71. PubMed ID: 2552261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage Mu transposase: deletion of the carboxy-terminal end does not abolish DNA-binding activity.
    Betermier M; Alazard R; Ragueh F; Roulet E; Toussaint A; Chandler M
    Mol Gen Genet; 1987 Nov; 210(1):77-85. PubMed ID: 2828889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of functionally important sites in the bacteriophage Mu transposase protein.
    Ulycznyj PI; Forghani F; DuBow MS
    Mol Gen Genet; 1994 Feb; 242(3):272-9. PubMed ID: 8107674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cis-acting DNA sequences required in vivo for bacteriophage Mu helper-mediated transposition and packaging.
    Harel J; Duplessis L; Kahn JS; DuBow MS
    Arch Microbiol; 1990; 154(1):67-72. PubMed ID: 2168695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo mutagenesis of bacteriophage Mu transposase.
    Toussaint A; Desmet L; Faelen M; Alazard R; Chandler M; Pato M
    J Bacteriol; 1987 Dec; 169(12):5700-7. PubMed ID: 2824443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional analysis of the Tn5 transposase. Identification of domains required for DNA binding and multimerization.
    Weinreich MD; Mahnke-Braam L; Reznikoff WS
    J Mol Biol; 1994 Aug; 241(2):166-77. PubMed ID: 8057357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instability of bacteriophage Mu transposase and the role of host Hfl protein.
    Gama MJ; Toussaint A; Pato ML
    Mol Microbiol; 1990 Nov; 4(11):1891-7. PubMed ID: 1964485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancer-independent variants of phage Mu transposase: enhancer-specific stimulation of catalytic activity by a partner transposase.
    Yang JY; Jayaram M; Harshey RM
    Genes Dev; 1995 Oct; 9(20):2545-55. PubMed ID: 7590234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IS1-encoded proteins, InsA and the InsA-B'-InsB transframe protein (transposase): functions deduced from their DNA-binding ability.
    Sekino N; Sekine Y; Ohtsubo E
    Adv Biophys; 1995; 31():209-22. PubMed ID: 7625275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of the A gene of bacteriophage Mu and purification of its product, the Mu transposase.
    Craigie R; Mizuuchi K
    J Biol Chem; 1985 Feb; 260(3):1832-5. PubMed ID: 2981873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two mutations of phage mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains.
    Leung PC; Harshey RM
    J Mol Biol; 1991 May; 219(2):189-99. PubMed ID: 1645409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage.
    Wu Z; Chaconas G
    EMBO J; 1995 Aug; 14(15):3835-43. PubMed ID: 7641701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer.
    Kim K; Namgoong SY; Jayaram M; Harshey RM
    J Biol Chem; 1995 Jan; 270(3):1472-9. PubMed ID: 7836417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations.
    Surette MG; Harkness T; Chaconas G
    J Biol Chem; 1991 Feb; 266(5):3118-24. PubMed ID: 1847140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mu transposase-stimulated illegitimate recombination of Tn3kan- and IS101-containing plasmids.
    Cameron RK; Ulycznyj PI; DuBow MS
    Res Microbiol; 1995 Oct; 146(8):601-16. PubMed ID: 8584785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-terminal domain of the insertion sequence 30 transposase interacts specifically with the terminal inverted repeats of the element.
    Stalder R; Caspers P; Olasz F; Arber W
    J Biol Chem; 1990 Mar; 265(7):3757-62. PubMed ID: 2154486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a region in phage Mu transposase that is involved in interaction with the Mu B protein.
    Wu Z; Chaconas G
    J Biol Chem; 1994 Nov; 269(46):28829-33. PubMed ID: 7961840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.