These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 21776640)
1. Adsorption of benzene on noble metal surfaces studied by density functional theory with Van der Waals correction. Toyoda K; Hamada I; Yanagisawa S; Morikawa Y J Nanosci Nanotechnol; 2011 Apr; 11(4):2836-43. PubMed ID: 21776640 [TBL] [Abstract][Full Text] [Related]
2. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces. Chen DL; Al-Saidi WA; Johnson JK J Phys Condens Matter; 2012 Oct; 24(42):424211. PubMed ID: 23032730 [TBL] [Abstract][Full Text] [Related]
3. Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. Zhao Y; Truhlar DG J Phys Chem A; 2006 Apr; 110(15):5121-9. PubMed ID: 16610834 [TBL] [Abstract][Full Text] [Related]
4. Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: performance of density functionals with van der Waals interactions. Hanke F; Dyer MS; Björk J; Persson M J Phys Condens Matter; 2012 Oct; 24(42):424217. PubMed ID: 23031831 [TBL] [Abstract][Full Text] [Related]
5. Adsorption of water and ethanol on noble and transition-metal substrates: a density functional investigation within van der Waals corrections. Freire RL; Kiejna A; Da Silva JL Phys Chem Chem Phys; 2016 Oct; 18(42):29526-29536. PubMed ID: 27747329 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of benzene on coinage metals: a theoretical analysis using wavefunction-based methods. Caputo R; Prascher BP; Staemmler V; Bagus PS; Wöll C J Phys Chem A; 2007 Dec; 111(49):12778-84. PubMed ID: 17999480 [TBL] [Abstract][Full Text] [Related]
7. Physical adsorption: theory of van der Waals interactions between particles and clean surfaces. Tao J; Rappe AM Phys Rev Lett; 2014 Mar; 112(10):106101. PubMed ID: 24679308 [TBL] [Abstract][Full Text] [Related]
8. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: vacuum level shifts and electronic structures. Toyoda K; Hamada I; Lee K; Yanagisawa S; Morikawa Y J Chem Phys; 2010 Apr; 132(13):134703. PubMed ID: 20387950 [TBL] [Abstract][Full Text] [Related]
9. London Dispersion Corrections to Density Functional Theory for Transition Metals Based on Fitting to Experimental Temperature-Programmed Desorption of Benzene Monolayers. Yang H; Cheng T; Goddard WA J Phys Chem Lett; 2021 Jan; 12(1):73-79. PubMed ID: 33306392 [TBL] [Abstract][Full Text] [Related]
10. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. Sato T; Nakai H J Chem Phys; 2009 Dec; 131(22):224104. PubMed ID: 20001021 [TBL] [Abstract][Full Text] [Related]
11. The role of van der Waals forces in water adsorption on metals. Carrasco J; Klimeš J; Michaelides A J Chem Phys; 2013 Jan; 138(2):024708. PubMed ID: 23320714 [TBL] [Abstract][Full Text] [Related]
12. The Nature of the Binding of Au, Ag, and Pd to Benzene, Coronene, and Graphene: From Benchmark CCSD(T) Calculations to Plane-Wave DFT Calculations. Granatier J; Lazar P; Otyepka M; Hobza P J Chem Theory Comput; 2011 Nov; 7(11):3743-3755. PubMed ID: 22076121 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of large hydrocarbons on coinage metals: a van der Waals density functional study. Björk J; Stafström S Chemphyschem; 2014 Sep; 15(13):2851-8. PubMed ID: 25044659 [TBL] [Abstract][Full Text] [Related]
14. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2). Moses PG; Mortensen JJ; Lundqvist BI; Norskov JK J Chem Phys; 2009 Mar; 130(10):104709. PubMed ID: 19292551 [TBL] [Abstract][Full Text] [Related]
15. Adsorption studies of C6H6 on Cu (111), Ag (111), and Au (111) within dispersion corrected density functional theory. Chwee TS; Sullivan MB J Chem Phys; 2012 Oct; 137(13):134703. PubMed ID: 23039606 [TBL] [Abstract][Full Text] [Related]
16. First-principles theoretical study of Alq3Al interfaces: origin of the interfacial dipole. Yanagisawa S; Lee K; Morikawa Y J Chem Phys; 2008 Jun; 128(24):244704. PubMed ID: 18601362 [TBL] [Abstract][Full Text] [Related]
17. Tuning the work function of stepped metal surfaces by adsorption of organic molecules. Jiang Y; Li J; Su G; Ferri N; Liu W; Tkatchenko A J Phys Condens Matter; 2017 May; 29(20):204001. PubMed ID: 28345536 [TBL] [Abstract][Full Text] [Related]
18. Binding energies of benzene on coinage metal surfaces: Equal stability on different metals. Maaß F; Jiang Y; Liu W; Tkatchenko A; Tegeder P J Chem Phys; 2018 Jun; 148(21):214703. PubMed ID: 29884059 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of small aromatic molecules on the (111) surfaces of noble metals: A density functional theory study with semiempirical corrections for dispersion effects. Tonigold K; Gross A J Chem Phys; 2010 Jun; 132(22):224701. PubMed ID: 20550410 [TBL] [Abstract][Full Text] [Related]
20. The dynamics of benzene on Cu(111): a combined helium spin echo and dispersion-corrected DFT study into the diffusion of physisorbed aromatics on metal surfaces. Sacchi M; Singh P; Chisnall DM; Ward DJ; Jardine AP; Allison W; Ellis J; Hedgeland H Faraday Discuss; 2017 Oct; 204(0):471-485. PubMed ID: 28766630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]