These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21776707)

  • 1. NbN and NbS2 nanobelt arrays: in-situ conversion preparation and field-emission performance.
    Tao Y; Gao Q; Wang X; Wu X; Mao C; Zhu J
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3345-9. PubMed ID: 21776707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and field-emission of TaSe2 nanobelt quasi-arrays, and electrical transport of its individual nanobelt.
    Wu X; Tao Y; Li L; Zhai T; Bando Y; Golberg D
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10123-9. PubMed ID: 22413354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile hydrothermal synthesis route to single-crystalline lead iodide nanobelts and nanobelt bundles.
    Ma D; Zhang W; Zhang R; Zhang M; Xi G; Qian Y
    J Nanosci Nanotechnol; 2005 May; 5(5):810-3. PubMed ID: 16010944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and field-emission performance of zirconium disulfide nanobelt arrays.
    Zhang YL; Wu XC; Tao YR; Mao CJ; Zhu JJ
    Chem Commun (Camb); 2008 Jun; (23):2683-5. PubMed ID: 18535707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.
    Wen X; Wang S; Ding Y; Wang ZL; Yang S
    J Phys Chem B; 2005 Jan; 109(1):215-20. PubMed ID: 16851007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission.
    Wu XC; Tao YR; Gao QX
    Chem Commun (Camb); 2009 Oct; (40):6008-10. PubMed ID: 19809626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable field emission performance from urchin-like ZnO nanostructures.
    Jiang H; Hu J; Gu F; Li C
    Nanotechnology; 2009 Feb; 20(5):055706. PubMed ID: 19417365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and field emission of single-crystalline copper vanadate nanobelts.
    Mao C; Wang X; Wu X; Zhu JJ; Chen HY
    Nanotechnology; 2008 Jan; 19(3):035607. PubMed ID: 21817581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of superconducting nanocrystalline niobium nitride.
    Shi L; Gu Y; Chen L; Yang Z; Ma J; Qian Y
    J Nanosci Nanotechnol; 2005 Feb; 5(2):296-9. PubMed ID: 15853151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission.
    Fang X; Bando Y; Ye C; Golberg D
    Chem Commun (Camb); 2007 Aug; (29):3048-50. PubMed ID: 17639137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel lift-off method for fabricating patterned and vertically-aligned W18O49 nanowire arrays with good field emission performance.
    Liu F; Mo FY; Jin SY; Li L; Chen ZS; Sun R; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Apr; 3(4):1850-4. PubMed ID: 21384034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal synthesis of tetragonal BaTiO3 nanotube arrays with high dielectric performance.
    Wang L; Deng X; Li J; Liao X; Zhang G; Wang C; Su K
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4224-8. PubMed ID: 24738375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, electronic and magnetic properties of ultra-narrow NbSe2 nanoribbons.
    Ji K; Yu L; Lu J; Li H; Luo G; Zhou J; Qin R; Liu Q; Lai L; Gao Z
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2075-9. PubMed ID: 21449352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centimeter-long Ta3N5 nanobelts: synthesis, electrical transport, and photoconductive properties.
    Wu XC; Tao YR; Li L; Bando Y; Golberg D
    Nanotechnology; 2013 May; 24(17):175701. PubMed ID: 23548821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudo-tricolor typed nanobelts and arrays simultaneously endowed with conductive anisotropy, magnetism and white fluorescence.
    Yang L; Shao H; Hong F; Qi H; Xie Y; Yu W; Dong X; Li D; Ma Q; Liu G
    Phys Chem Chem Phys; 2022 Nov; 24(42):26211-26222. PubMed ID: 36278828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of carbon-nitrogen nanostructures by hot isostatic pressure apparatus and their field emission properties.
    Lee YD; Blank VD; Batov DV; Buga SG; Lee YH; Nahm S; Ju BK
    J Nanosci Nanotechnol; 2007 Feb; 7(2):570-4. PubMed ID: 17450797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct growth of quasi-aligned ultrafine ZnS nanowire arrays on conducting zinc foils and their field emission properties.
    Qian G; Huo K; Fu J; Chu PK
    J Nanosci Nanotechnol; 2009 May; 9(5):3347-51. PubMed ID: 19453014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled synthesis and field emission properties of ZnO nanostructures with different morphologies.
    Huang YH; Zhang Y; Liu L; Fan SS; Wei Y; He J
    J Nanosci Nanotechnol; 2006 Mar; 6(3):787-90. PubMed ID: 16573138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale hydrothermal synthesis of SnS2 nanobelts.
    Ma D; Zhang W; Tang Q; Zhang R; Yu W; Qian Y
    J Nanosci Nanotechnol; 2005 May; 5(5):806-9. PubMed ID: 16010943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of La0.6Nd0.2Na0.2MnO3 nanowire and its magnetism.
    Lai SH; Wang TF; Lan MD
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2070-4. PubMed ID: 21449351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.