BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21776964)

  • 1. Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons.
    Berrier A; Cools R; Arnold C; Offermans P; Crego-Calama M; Brongersma SH; Gómez-Rivas J
    ACS Nano; 2011 Aug; 5(8):6226-32. PubMed ID: 21776964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps.
    Nagasawa F; Takase M; Murakoshi K
    J Phys Chem Lett; 2014 Jan; 5(1):14-9. PubMed ID: 26276174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-dependent strong coupling between surface plasmon polaritons and excitons in an organic-dye-doped nanostructure.
    Zhang K; Chen TY; Shi WB; Li CY; Fan RH; Wang QJ; Peng RW; Wang M
    Opt Lett; 2017 Jul; 42(14):2834-2837. PubMed ID: 28708181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures.
    Vasa P; Pomraenke R; Cirmi G; De Re E; Wang W; Schwieger S; Leipold D; Runge E; Cerullo G; Lienau C
    ACS Nano; 2010 Dec; 4(12):7559-65. PubMed ID: 21082799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe
    Wurdack M; Lundt N; Klaas M; Baumann V; Kavokin AV; Höfling S; Schneider C
    Nat Commun; 2017 Aug; 8(1):259. PubMed ID: 28811462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong coupling of hybrid states of light and matter in cavity-coupled quantum dot solids.
    Sangeetha A; Reivanth K; Thrupthika T; Ramya S; Nataraj D
    Sci Rep; 2023 Oct; 13(1):16662. PubMed ID: 37794042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single vs double anti-crossing in the strong coupling between surface plasmons and molecular excitons.
    Tan WJ; Thomas PA; Luxmoore IJ; Barnes WL
    J Chem Phys; 2021 Jan; 154(2):024704. PubMed ID: 33445885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Coupling between Self-Assembled Molecules and Surface Plasmon Polaritons.
    Bigeon J; Le Liepvre S; Vassant S; Belabas N; Bardou N; Minot C; Yacomotti A; Levenson A; Charra F; Barbay S
    J Phys Chem Lett; 2017 Nov; 8(22):5626-5632. PubMed ID: 29094949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye.
    Baieva SV; Hakala TK; Toppari JJ
    Nanoscale Res Lett; 2012 Mar; 7(1):191. PubMed ID: 22429311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide.
    Liu X; Bao W; Li Q; Ropp C; Wang Y; Zhang X
    Phys Rev Lett; 2017 Jul; 119(2):027403. PubMed ID: 28753353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greatly Enhanced Plasmon-Exciton Coupling in Si/WS
    Deng F; Huang H; Chen JD; Liu S; Pang H; He X; Lan S
    Nano Lett; 2022 Jan; 22(1):220-228. PubMed ID: 34962400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring Dispersion of Room-Temperature Exciton-Polaritons with Perovskite-Based Subwavelength Metasurfaces.
    Dang NHM; Gerace D; Drouard E; Trippé-Allard G; Lédée F; Mazurczyk R; Deleporte E; Seassal C; Nguyen HS
    Nano Lett; 2020 Mar; 20(3):2113-2119. PubMed ID: 32074449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room Temperature Coherently Coupled Exciton-Polaritons in Two-Dimensional Organic-Inorganic Perovskite.
    Wang J; Su R; Xing J; Bao D; Diederichs C; Liu S; Liew TCH; Chen Z; Xiong Q
    ACS Nano; 2018 Aug; 12(8):8382-8389. PubMed ID: 30089200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong coupling between surface plasmon polaritons and β-carotene in nanolayered system.
    Baieva S; Ihalainen JA; Toppari JJ
    J Chem Phys; 2013 Jan; 138(4):044707. PubMed ID: 23387615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polariton hyperspectral imaging of two-dimensional semiconductor crystals.
    Gebhardt C; Förg M; Yamaguchi H; Bilgin I; Mohite AD; Gies C; Florian M; Hartmann M; Hänsch TW; Högele A; Hunger D
    Sci Rep; 2019 Sep; 9(1):13756. PubMed ID: 31551486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation.
    Rodriguez SR; Feist J; Verschuuren MA; Garcia Vidal FJ; Gómez Rivas J
    Phys Rev Lett; 2013 Oct; 111(16):166802. PubMed ID: 24182291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS
    Cuadra J; Baranov DG; Wersäll M; Verre R; Antosiewicz TJ; Shegai T
    Nano Lett; 2018 Mar; 18(3):1777-1785. PubMed ID: 29369640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.