BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21776989)

  • 1. Intracellular pH sensing using autofluorescence lifetime microscopy.
    Ogikubo S; Nakabayashi T; Adachi T; Islam MS; Yoshizawa T; Kinjo M; Ohta N
    J Phys Chem B; 2011 Sep; 115(34):10385-90. PubMed ID: 21776989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced nicotinamide adenine dinucleotide fluorescence lifetime detected poly(adenosine-5'-diphosphate-ribose) polymerase-1-mediated cell death and therapeutic effect of pyruvate.
    Guo HW; Wei YH; Wang HW
    J Biomed Opt; 2011 Jun; 16(6):068001. PubMed ID: 21721834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy.
    Sanders R; Draaijer A; Gerritsen HC; Houpt PM; Levine YK
    Anal Biochem; 1995 May; 227(2):302-8. PubMed ID: 7573951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive detection of intracellular environment of normal and cancer cells by autofluorescence lifetime imaging.
    Awasthi K; Moriya D; Nakabayashi T; Li L; Ohta N
    J Photochem Photobiol B; 2016 Dec; 165():256-265. PubMed ID: 27842280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH dependence of the fluorescence lifetime of FAD in solution and in cells.
    Islam MS; Honma M; Nakabayashi T; Kinjo M; Ohta N
    Int J Mol Sci; 2013 Jan; 14(1):1952-63. PubMed ID: 23334475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive and meaningful measures of bacterial metabolic activity using NADH fluorescence.
    Wos M; Pollard P
    Water Res; 2006 Jun; 40(10):2084-92. PubMed ID: 16690100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells.
    Yu JS; Guo HW; Wang CH; Wei YH; Wang HW
    J Biomed Opt; 2011 Mar; 16(3):036008. PubMed ID: 21456871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH.
    Bird DK; Yan L; Vrotsos KM; Eliceiri KW; Vaughan EM; Keely PJ; White JG; Ramanujam N
    Cancer Res; 2005 Oct; 65(19):8766-73. PubMed ID: 16204046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors.
    Orte A; Alvarez-Pez JM; Ruedas-Rama MJ
    ACS Nano; 2013 Jul; 7(7):6387-95. PubMed ID: 23808971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements.
    Nakabayashi T; Wang HP; Kinjo M; Ohta N
    Photochem Photobiol Sci; 2008 Jun; 7(6):668-70. PubMed ID: 18528549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular pH affects the fluorescence lifetimes of metabolic co-factors.
    Schmitz R; Tweed K; Walsh C; Walsh AJ; Skala MC
    J Biomed Opt; 2021 May; 26(5):. PubMed ID: 34032035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence.
    Niesner R; Peker B; Schlüsche P; Gericke KH
    Chemphyschem; 2004 Aug; 5(8):1141-9. PubMed ID: 15446736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles: catalyst for the oxidation of NADH to NAD(+).
    Huang X; El-Sayed IH; Yi X; El-Sayed MA
    J Photochem Photobiol B; 2005 Nov; 81(2):76-83. PubMed ID: 16125965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of HeLa cells revealed through autofluorescence lifetime upon infection with enterohemorrhagic Escherichia coli.
    Buryakina TY; Su PT; Syu W; Chang CA; Fan HF; Kao FJ
    J Biomed Opt; 2012 Oct; 17(10):101503. PubMed ID: 23223979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing of intracellular environments by fluorescence lifetime imaging of exogenous fluorophores.
    Nakabayashi T; Ohta N
    Anal Sci; 2015; 31(4):275-85. PubMed ID: 25864670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular nicotinamide adenine dinucleotide (NADH) as an indicator of bacterial metabolic activity dynamics in activated sludge.
    Wos ML; Pollard PC
    Water Sci Technol; 2009; 60(3):783-91. PubMed ID: 19657174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics.
    Zheng W; Li D; Qu JY
    J Biomed Opt; 2010; 15(3):037013. PubMed ID: 20615042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution intravital NADH fluorescence microscopy allows measurements of tissue bioenergetics in rat ileal mucosa.
    Rose J; Martin C; MacDonald T; Ellis C
    Microcirculation; 2006 Jan; 13(1):41-7. PubMed ID: 16393945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic imaging of intracellular calcium in live cells using lifetime-based ratiometric measurements of Oregon Green BAPTA-1.
    Lattarulo C; Thyssen D; Kuchibholta KV; Hyman BT; Bacskaiq BJ
    Methods Mol Biol; 2011; 793():377-89. PubMed ID: 21913114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.