These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 21777500)

  • 1. Mutual interactions between an invasive bark beetle and its associated fungi.
    Wang B; Salcedo C; Lu M; Sun J
    Bull Entomol Res; 2012 Feb; 102(1):71-7. PubMed ID: 21777500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible pine rosin defense mediates interactions between an invasive insect-fungal complex and newly acquired sympatric fungal associates.
    Cheng C; Zhou F; Lu M; Sun J
    Integr Zool; 2015 Sep; 10(5):453-64. PubMed ID: 25939920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red turpentine beetle: innocuous native becomes invasive tree killer in China.
    Sun J; Lu M; Gillette NE; Wingfield MJ
    Annu Rev Entomol; 2013; 58():293-311. PubMed ID: 22994548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative variation and biosynthesis of hindgut volatiles associated with the red turpentine beetle, Dendroctonus valens LeConte, at different attack phases.
    Shi ZH; Sun JH
    Bull Entomol Res; 2010 Jun; 100(3):273-7. PubMed ID: 19671207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial volatile ammonia regulates the consumption sequence of d-pinitol and d-glucose in a fungus associated with an invasive bark beetle.
    Zhou F; Xu L; Wang S; Wang B; Lou Q; Lu M; Sun J
    ISME J; 2017 Dec; 11(12):2809-2820. PubMed ID: 28800134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis.
    Zhou F; Lou Q; Wang B; Xu L; Cheng C; Lu M; Sun J
    Sci Rep; 2016 Feb; 6():20135. PubMed ID: 26839264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharide-mediated antagonistic effects of bark beetle fungal associates on larvae.
    Wang B; Lu M; Cheng C; Salcedo C; Sun J
    Biol Lett; 2013 Feb; 9(1):20120787. PubMed ID: 23193043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ophiostomatoid fungi (Ascomycota) associated with Pinus tabuliformis infested by Dendroctonus valens (Coleoptera) in northern China and an assessment of their pathogenicity on mature trees.
    Lu Q; Decock C; Zhang XY; Maraite H
    Antonie Van Leeuwenhoek; 2009 Oct; 96(3):275-93. PubMed ID: 19404768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecology of root-feeding beetles and their associated fungi on longleaf pine in Georgia.
    Zanzot JW; Matusick G; Eckhardt LG
    Environ Entomol; 2010 Apr; 39(2):415-23. PubMed ID: 20388270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex interactions among host pines and fungi vectored by an invasive bark beetle.
    Lu M; Wingfield MJ; Gillette NE; Mori SR; Sun JH
    New Phytol; 2010 Aug; 187(3):859-66. PubMed ID: 20546136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taxonomy and phylogeny of the Leptographium procerum complex, including Leptographium sinense sp. nov. and Leptographium longiconidiophorum sp. nov.
    Yin M; Duong TA; Wingfield MJ; Zhou X; de Beer ZW
    Antonie Van Leeuwenhoek; 2015 Feb; 107(2):547-63. PubMed ID: 25510728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the pest-pathogen threats in a warming world for the red turpentine beetle (Dendroctonus valens) and its symbiotic fungus (Leptographium procerum).
    Zhou Y; Guo S; Wang T; Zong S; Ge X
    Pest Manag Sci; 2024 Jul; 80(7):3423-3435. PubMed ID: 38407566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus.
    Xu L; Zhang Y; Zhang S; Deng J; Lu M; Zhang L; Zhang J
    Dev Comp Immunol; 2018 Nov; 88():65-69. PubMed ID: 30017857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of water potential and solute on the growth and interactions of two fungal symbionts of the mountain pine beetle.
    Bleiker KP; Six DL
    Mycol Res; 2009 Jan; 113(Pt 1):3-15. PubMed ID: 18640273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large shift in symbiont assemblage in the invasive red turpentine beetle.
    Taerum SJ; Duong TA; de Beer ZW; Gillette N; Sun JH; Owen DR; Wingfield MJ
    PLoS One; 2013; 8(10):e78126. PubMed ID: 24205124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain.
    Romón P; Zhou X; Iturrondobeitia JC; Wingfield MJ; Goldarazena A
    Can J Microbiol; 2007 Jun; 53(6):756-67. PubMed ID: 17668036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An invasive beetle-fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles.
    Liu F; Wickham JD; Cao Q; Lu M; Sun J
    ISME J; 2020 Nov; 14(11):2829-2842. PubMed ID: 32814865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts.
    Goodsman DW; Erbilgin N; Lieffers VJ
    Environ Entomol; 2012 Jun; 41(3):478-86. PubMed ID: 22732605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.
    Therrien J; Mason CJ; Cale JA; Adams A; Aukema BH; Currie CR; Raffa KF; Erbilgin N
    Oecologia; 2015 Oct; 179(2):467-85. PubMed ID: 26037523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal variation in mycophagy and prevalence of fungi associated with developmental stages of Dendroctonus ponderosae (Coleoptera: Curculionidae).
    Adams AS; Six DL
    Environ Entomol; 2007 Feb; 36(1):64-72. PubMed ID: 17349118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.