These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2177767)

  • 1. The role of afferent activity in the maintenance of primate neocorticalfunction.
    Jones EG
    J Exp Biol; 1990 Oct; 153():155-76. PubMed ID: 2177767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in the adult monkey visual cortex.
    Benson DL; Isackson PJ; Gall CM; Jones EG
    J Neurosci; 1991 Jan; 11(1):31-47. PubMed ID: 1846011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression.
    Jones EG; Huntley GW; Benson DL
    J Neurosci; 1994 Feb; 14(2):611-29. PubMed ID: 8301355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys.
    Benson DL; Huntsman MM; Jones EG
    Cereb Cortex; 1994; 4(1):40-51. PubMed ID: 8180490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey.
    Benson DL; Isackson PJ; Hendry SH; Jones EG
    J Neurosci; 1991 Jun; 11(6):1540-64. PubMed ID: 1646294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive responses of monkey somatosensory cortex to peripheral and central deafferentation.
    Jones EG; Woods TM; Manger PR
    Neuroscience; 2002; 111(4):775-97. PubMed ID: 12031404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17.
    Hendry SH; Jones EG
    Nature; 1986 Apr 24-30; 320(6064):750-3. PubMed ID: 3703001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys.
    Hendry SH; Jones EG
    Neuron; 1988 Oct; 1(8):701-12. PubMed ID: 3272185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamic acid decarboxylase in the striate cortex of normal and monocularly deprived kittens.
    Bear MF; Schmechel DE; Ebner FF
    J Neurosci; 1985 May; 5(5):1262-75. PubMed ID: 2987436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+/calmodulin protein kinase gene expression in the rat central nervous system.
    Benson DL; Isackson PJ; Gall CM; Jones EG
    Neuroscience; 1992; 46(4):825-49. PubMed ID: 1311814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.
    Akbarian S; Kim JJ; Potkin SG; Hagman JO; Tafazzoli A; Bunney WE; Jones EG
    Arch Gen Psychiatry; 1995 Apr; 52(4):258-66. PubMed ID: 7702443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA and protein expression in organotypic cultures of rat visual cortex.
    Patz S; Wirth MJ; Gorba T; Klostermann O; Wahle P
    Eur J Neurosci; 2003 Jul; 18(1):1-12. PubMed ID: 12859332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual experience regulates gene expression in the developing striate cortex.
    Neve RL; Bear MF
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4781-4. PubMed ID: 2543986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period.
    Chattopadhyaya B; Di Cristo G; Higashiyama H; Knott GW; Kuhlman SJ; Welker E; Huang ZJ
    J Neurosci; 2004 Oct; 24(43):9598-611. PubMed ID: 15509747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permissive proteolytic activity for visual cortical plasticity.
    Mataga N; Nagai N; Hensch TK
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7717-21. PubMed ID: 12032349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex.
    Hendry SH; Houser CR; Jones EG; Vaughn JE
    J Neurocytol; 1983 Aug; 12(4):639-60. PubMed ID: 6352868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus-dependent, reciprocal up- and downregulation of glutamic acid decarboxylase and Ca2+/calmodulin-dependent protein kinase II gene expression in rat cerebral cortex.
    Liang F; Isackson PJ; Jones EG
    Exp Brain Res; 1996 Jul; 110(2):163-74. PubMed ID: 8836681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent regulation of gene expression in adult monkey visual cortex.
    Jones EG; Benson DL; Hendry SH; Isackson PJ
    Cold Spring Harb Symp Quant Biol; 1990; 55():481-90. PubMed ID: 1966769
    [No Abstract]   [Full Text] [Related]  

  • 19. Expression of glutamic acid decarboxylase mRNA in normal and monocularly deprived cat visual cortex.
    Benson DL; Isackson PJ; Hendry SH; Jones EG
    Brain Res Mol Brain Res; 1989 Jun; 5(4):279-87. PubMed ID: 2747451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation.
    Lein ES; Shatz CJ
    J Neurosci; 2000 Feb; 20(4):1470-83. PubMed ID: 10662837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.