These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 21777683)
1. Super-resolution track-density imaging studies of mouse brain: comparison to histology. Calamante F; Tournier JD; Kurniawan ND; Yang Z; Gyengesi E; Galloway GJ; Reutens DC; Connelly A Neuroimage; 2012 Jan; 59(1):286-96. PubMed ID: 21777683 [TBL] [Abstract][Full Text] [Related]
2. Track density imaging (TDI): validation of super resolution property. Calamante F; Tournier JD; Heidemann RM; Anwander A; Jackson GD; Connelly A Neuroimage; 2011 Jun; 56(3):1259-66. PubMed ID: 21354314 [TBL] [Abstract][Full Text] [Related]
3. Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Calamante F; Tournier JD; Jackson GD; Connelly A Neuroimage; 2010 Dec; 53(4):1233-43. PubMed ID: 20643215 [TBL] [Abstract][Full Text] [Related]
4. A generalised framework for super-resolution track-weighted imaging. Calamante F; Tournier JD; Smith RE; Connelly A Neuroimage; 2012 Feb; 59(3):2494-503. PubMed ID: 21925280 [TBL] [Abstract][Full Text] [Related]
5. Visualization of mouse barrel cortex using ex-vivo track density imaging. Kurniawan ND; Richards KL; Yang Z; She D; Ullmann JF; Moldrich RX; Liu S; Yaksic JU; Leanage G; Kharatishvili I; Wimmer V; Calamante F; Galloway GJ; Petrou S; Reutens DC Neuroimage; 2014 Feb; 87():465-75. PubMed ID: 24060319 [TBL] [Abstract][Full Text] [Related]
6. Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Richards K; Calamante F; Tournier JD; Kurniawan ND; Sadeghian F; Retchford AR; Jones GD; Reid CA; Reutens DC; Ordidge R; Connelly A; Petrou S Neuroimage; 2014 Nov; 102 Pt 2():381-92. PubMed ID: 25087481 [TBL] [Abstract][Full Text] [Related]
7. Quantification of voxel-wise total fibre density: Investigating the problems associated with track-count mapping. Calamante F; Smith RE; Tournier JD; Raffelt D; Connelly A Neuroimage; 2015 Aug; 117():284-93. PubMed ID: 26037054 [TBL] [Abstract][Full Text] [Related]
8. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Bürgel U; Amunts K; Hoemke L; Mohlberg H; Gilsbach JM; Zilles K Neuroimage; 2006 Feb; 29(4):1092-105. PubMed ID: 16236527 [TBL] [Abstract][Full Text] [Related]
9. Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging. Hamaide J; De Groof G; Van Steenkiste G; Jeurissen B; Van Audekerke J; Naeyaert M; Van Ruijssevelt L; Cornil C; Sijbers J; Verhoye M; Van der Linden A Neuroimage; 2017 Feb; 146():789-803. PubMed ID: 27697612 [TBL] [Abstract][Full Text] [Related]
10. Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability. Willats L; Raffelt D; Smith RE; Tournier JD; Connelly A; Calamante F Neuroimage; 2014 Feb; 87():18-31. PubMed ID: 24246491 [TBL] [Abstract][Full Text] [Related]
11. Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging. Ullmann JF; Calamante F; Collin SP; Reutens DC; Kurniawan ND Brain Struct Funct; 2015 Jan; 220(1):457-68. PubMed ID: 24197554 [TBL] [Abstract][Full Text] [Related]
12. Super-Resolution Track-Density Imaging Reveals Fine Anatomical Features in Tree Shrew Primary Visual Cortex and Hippocampus. Dai JK; Wang SX; Shan D; Niu HC; Lei H Neurosci Bull; 2018 Jun; 34(3):438-448. PubMed ID: 29247318 [TBL] [Abstract][Full Text] [Related]
13. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. Shilling RZ; Robbie TQ; Bailloeul T; Mewes K; Mersereau RM; Brummer ME IEEE Trans Med Imaging; 2009 May; 28(5):633-44. PubMed ID: 19272995 [TBL] [Abstract][Full Text] [Related]
14. In vivo diffusion tensor magnetic resonance imaging and fiber tracking of the mouse brain. Harsan LA; Paul D; Schnell S; Kreher BW; Hennig J; Staiger JF; von Elverfeldt D NMR Biomed; 2010 Aug; 23(7):884-96. PubMed ID: 20213629 [TBL] [Abstract][Full Text] [Related]
15. Mapping the orientation of intravoxel crossing fibers based on the phase information of diffusion circular spectrum. Zhan W; Stein EA; Yang Y Neuroimage; 2004 Dec; 23(4):1358-69. PubMed ID: 15589100 [TBL] [Abstract][Full Text] [Related]
16. Segmentation of the mouse hippocampal formation in magnetic resonance images. Richards K; Watson C; Buckley RF; Kurniawan ND; Yang Z; Keller MD; Beare R; Bartlett PF; Egan GF; Galloway GJ; Paxinos G; Petrou S; Reutens DC Neuroimage; 2011 Oct; 58(3):732-40. PubMed ID: 21704710 [TBL] [Abstract][Full Text] [Related]
17. Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain. Calamante F; Masterton RA; Tournier JD; Smith RE; Willats L; Raffelt D; Connelly A Neuroimage; 2013 Apr; 70():199-210. PubMed ID: 23298749 [TBL] [Abstract][Full Text] [Related]
18. High-resolution imaging with high and ultra high-field magnetic resonance imaging systems. Nakada T; Matsuzawa H; Kwee IL Neuroreport; 2008 Jan; 19(1):7-13. PubMed ID: 18281884 [TBL] [Abstract][Full Text] [Related]
19. MRI-guided volume reconstruction of mouse brain from histological sections. Yang Z; Richards K; Kurniawan ND; Petrou S; Reutens DC J Neurosci Methods; 2012 Nov; 211(2):210-7. PubMed ID: 22981936 [TBL] [Abstract][Full Text] [Related]
20. Image-guided dissection of human white matter tracts as a new method of modern neuroanatomical training. Skadorwa T; Kunicki J; Nauman P; Ciszek B Folia Morphol (Warsz); 2009 Aug; 68(3):135-9. PubMed ID: 19722156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]