These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 21777815)

  • 1. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation.
    Grohmann D; Nagy J; Chakraborty A; Klose D; Fielden D; Ebright RH; Michaelis J; Werner F
    Mol Cell; 2011 Jul; 43(2):263-74. PubMed ID: 21777815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle.
    Schulz S; Gietl A; Smollett K; Tinnefeld P; Werner F; Grohmann D
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1816-25. PubMed ID: 26979960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif.
    Hirtreiter A; Damsma GE; Cheung AC; Klose D; Grohmann D; Vojnic E; Martin AC; Cramer P; Werner F
    Nucleic Acids Res; 2010 Jul; 38(12):4040-51. PubMed ID: 20197319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.
    Tarău D; Grünberger F; Pilsl M; Reichelt R; Heiß F; König S; Urlaub H; Hausner W; Engel C; Grohmann D
    Nucleic Acids Res; 2024 Jun; 52(10):6017-6035. PubMed ID: 38709902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
    Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L
    Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
    Martinez-Rucobo FW; Sainsbury S; Cheung AC; Cramer P
    EMBO J; 2011 Apr; 30(7):1302-10. PubMed ID: 21386817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.
    Nagy J; Grohmann D; Cheung AC; Schulz S; Smollett K; Werner F; Michaelis J
    Nat Commun; 2015 Jan; 6():6161. PubMed ID: 25635909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct modulation of RNA polymerase core functions by basal transcription factors.
    Werner F; Weinzierl RO
    Mol Cell Biol; 2005 Sep; 25(18):8344-55. PubMed ID: 16135821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaeal chromatin and transcription.
    Reeve JN
    Mol Microbiol; 2003 May; 48(3):587-98. PubMed ID: 12694606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase.
    Smollett K; Blombach F; Reichelt R; Thomm M; Werner F
    Nat Microbiol; 2017 Mar; 2():17021. PubMed ID: 28248297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The archaeal TFIIEalpha homologue facilitates transcription initiation by enhancing TATA-box recognition.
    Bell SD; Brinkman AB; van der Oost J; Jackson SP
    EMBO Rep; 2001 Feb; 2(2):133-8. PubMed ID: 11258705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
    Rosen GA; Baek I; Friedman LJ; Joo YJ; Buratowski S; Gelles J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32348-32357. PubMed ID: 33293419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation.
    Blombach F; Smollett KL; Grohmann D; Werner F
    J Mol Biol; 2016 Jun; 428(12):2592-2606. PubMed ID: 27107643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hold on!: RNA polymerase interactions with the nascent RNA modulate transcription elongation and termination.
    Grohmann D; Werner F
    RNA Biol; 2010; 7(3):310-5. PubMed ID: 20473037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription factor E is a part of transcription elongation complexes.
    Grünberg S; Bartlett MS; Naji S; Thomm M
    J Biol Chem; 2007 Dec; 282(49):35482-90. PubMed ID: 17921145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5.
    Blythe A; Gunasekara S; Walshe J; Mackay JP; Hartzog GA; Vrielink A
    Protein Expr Purif; 2014 Aug; 100():54-60. PubMed ID: 24859675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of transcription elongation in archaea.
    Werner F
    Chem Rev; 2013 Nov; 113(11):8331-49. PubMed ID: 24024741
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular basis of transcription initiation in Archaea.
    De Carlo S; Lin SC; Taatjes DJ; Hoenger A
    Transcription; 2010; 1(2):103-11. PubMed ID: 21326901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.