These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2177787)

  • 21. Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae.
    Hall DD; Markwardt DD; Parviz F; Heideman W
    EMBO J; 1998 Aug; 17(15):4370-8. PubMed ID: 9687505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of the cAMP pathway by the cell cycle start function, CDC25, in Saccharomyces cerevisiae.
    Tripp ML; Piñon R
    J Gen Microbiol; 1986 May; 132(5):1143-51. PubMed ID: 3021894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid transport: its role in cell division and growth of Saccharomyces cerevisiae cells.
    Dudani AK; Prasad R
    Biochem Int; 1983 Jul; 7(1):15-22. PubMed ID: 6383387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative studies between the glucose-induced phosphorylation signal and the heat shock response in mutants of Saccharomyces cerevisiae.
    Panek AD; Ferreira R; Panek AC
    Biochimie; 1989 Mar; 71(3):313-8. PubMed ID: 2545278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase.
    Matsumoto K; Uno I; Ishikawa T
    Exp Cell Res; 1983 Jun; 146(1):151-61. PubMed ID: 6305691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. cAMP-mediated increase in the critical cell size required for the G1 to S transition in Saccharomyces cerevisiae.
    Baroni MD; Monti P; Marconi G; Alberghina L
    Exp Cell Res; 1992 Aug; 201(2):299-306. PubMed ID: 1322313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase.
    Matsumoto K; Uno I; Oshima Y; Ishikawa T
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2355-9. PubMed ID: 6285379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insulin-like signaling in yeast: modulation of protein phosphatase 2A, protein kinase A, cAMP-specific phosphodiesterase, and glycosyl-phosphatidylinositol-specific phospholipase C activities.
    Müller G; Grey S; Jung C; Bandlow W
    Biochemistry; 2000 Feb; 39(6):1475-88. PubMed ID: 10684630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein.
    Munder T; Küntzel H
    FEBS Lett; 1989 Jan; 242(2):341-5. PubMed ID: 2536619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis.
    Thevelein JM; Beullens M
    J Gen Microbiol; 1985 Dec; 131(12):3199-209. PubMed ID: 3007655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcription of the yeast mitochondrial genome requires cyclic AMP.
    McEntee CM; Cantwell R; Rahman MU; Hudson AP
    Mol Gen Genet; 1993 Oct; 241(1-2):213-24. PubMed ID: 8232206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: the glucose-induced cAMP signal is not mediated by a transient drop in the intracellular pH.
    Thevelein JM; Beullens M; Honshoven F; Hoebeeck G; Detremerie K; Griewel B; den Hollander JA; Jans AW
    J Gen Microbiol; 1987 Aug; 133(8):2197-205. PubMed ID: 2832519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromosome separation and exit from mitosis in budding yeast: dependence on growth revealed by cAMP-mediated inhibition.
    Anghileri P; Branduardi P; Sternieri F; Monti P; Visintin R; Bevilacqua A; Alberghina L; Martegani E; Baroni MD
    Exp Cell Res; 1999 Aug; 250(2):510-23. PubMed ID: 10413604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes.
    Colombo S; Broggi S; Collini M; D'Alfonso L; Chirico G; Martegani E
    Biochem Biophys Res Commun; 2017 Jun; 487(3):594-599. PubMed ID: 28433631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Regulation of cellular function by cAMP in yeast].
    Uno I; Matsumoto K; Ishitawa T
    Seikagaku; 1984 May; 56(5):311-30. PubMed ID: 6088652
    [No Abstract]   [Full Text] [Related]  

  • 36. Glucose-dependent cell size is regulated by a G protein-coupled receptor system in yeast Saccharomyces cerevisiae.
    Tamaki H; Yun CW; Mizutani T; Tsuzuki T; Takagi Y; Shinozaki M; Kodama Y; Shirahige K; Kumagai H
    Genes Cells; 2005 Mar; 10(3):193-206. PubMed ID: 15743410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. cAMP, ethanol, and CO2 production with the addition of D-glucose anomer to starved yeast cells.
    Han K; Hong J; Lim HC
    Biochem Biophys Res Commun; 1994 Aug; 203(1):640-5. PubMed ID: 8074715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential regulation of glucose transport activity in yeast by specific cAMP signatures.
    Bermejo C; Haerizadeh F; Sadoine MS; Chermak D; Frommer WB
    Biochem J; 2013 Jun; 452(3):489-97. PubMed ID: 23495665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling.
    Ma P; Wera S; Van Dijck P; Thevelein JM
    Mol Biol Cell; 1999 Jan; 10(1):91-104. PubMed ID: 9880329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell cycle and growth regulation in RAS2 mutant cells of Saccharomyces cerevisiae.
    Baroni MD; Marconi G; Monti P; Alberghina L
    Ital J Biochem; 1993; 42(6):373-87. PubMed ID: 8144346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.