BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21777977)

  • 1. Gold nanoparticle-incorporated human red blood cells (RBCs) for X-ray dynamic imaging.
    Ahn S; Jung SY; Seo E; Lee SJ
    Biomaterials; 2011 Oct; 32(29):7191-9. PubMed ID: 21777977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.
    Ahn S; Jung SY; Lee JP; Kim HK; Lee SJ
    ACS Nano; 2010 Jul; 4(7):3753-62. PubMed ID: 20593852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan microparticles incorporating gold as an enhanced contrast flow tracer in dynamic X-ray imaging.
    Ahn S; Jung SY; Kim BH; Lee SJ
    Acta Biomater; 2011 May; 7(5):2139-47. PubMed ID: 21241831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray absorption of gold nanoparticles with thin silica shell.
    Park YS; Liz-Marzán LM; Kasuya A; Kobayashi Y; Nagao D; Konno M; Mamykin S; Dmytruk A; Takeda M; Ohuchi N
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3503-6. PubMed ID: 17252799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography.
    Cole LE; Ross RD; Tilley JM; Vargo-Gogola T; Roeder RK
    Nanomedicine (Lond); 2015 Jan; 10(2):321-41. PubMed ID: 25600973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human erythrocytes as nanoparticle carriers for magnetic particle imaging.
    Markov DE; Boeve H; Gleich B; Borgert J; Antonelli A; Sfara C; Magnani M
    Phys Med Biol; 2010 Nov; 55(21):6461-73. PubMed ID: 20959685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies.
    Kattumuri V; Katti K; Bhaskaran S; Boote EJ; Casteel SW; Fent GM; Robertson DJ; Chandrasekhar M; Kannan R; Katti KV
    Small; 2007 Feb; 3(2):333-41. PubMed ID: 17262759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical enhancement by nanomaterials under X-ray irradiation.
    Cheng NN; Starkewolf Z; Davidson RA; Sharmah A; Lee C; Lien J; Guo T
    J Am Chem Soc; 2012 Feb; 134(4):1950-3. PubMed ID: 22260210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations.
    Misawa M; Takahashi J
    Nanomedicine; 2011 Oct; 7(5):604-14. PubMed ID: 21333754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.
    Zhang A; Tu Y; Qin S; Li Y; Zhou J; Chen N; Lu Q; Zhang B
    J Colloid Interface Sci; 2012 Apr; 372(1):239-44. PubMed ID: 22289255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphoton-absorption-induced-luminescence (MAIL) imaging of tumor-targeted gold nanoparticles.
    Dowling MB; Li L; Park J; Kumi G; Nan A; Ghandehari H; Fourkas JT; DeShong P
    Bioconjug Chem; 2010 Nov; 21(11):1968-77. PubMed ID: 20964333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable gold nanoparticle conjugation to internal DNA positions: facile generation of discrete gold nanoparticle-DNA assemblies.
    Wen Y; McLaughlin CK; Lo PK; Yang H; Sleiman HF
    Bioconjug Chem; 2010 Aug; 21(8):1413-6. PubMed ID: 20666441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow tracing microparticle sensors designed for enhanced X-ray contrast.
    Lee SJ; Jung SY; Ahn S
    Biosens Bioelectron; 2010 Mar; 25(7):1571-8. PubMed ID: 20022479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the X-ray induced gold nanoparticle synthesis.
    Plech A; Kotaidis V; Siems A; Sztucki M
    Phys Chem Chem Phys; 2008 Jul; 10(26):3888-94. PubMed ID: 18688388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy.
    Berbeco RI; Ngwa W; Makrigiorgos GM
    Int J Radiat Oncol Biol Phys; 2011 Sep; 81(1):270-6. PubMed ID: 21163591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma.
    Hainfeld JF; Dilmanian FA; Zhong Z; Slatkin DN; Kalef-Ezra JA; Smilowitz HM
    Phys Med Biol; 2010 Jun; 55(11):3045-59. PubMed ID: 20463371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced detection of gold nanoparticles in agarose gel electrophoresis.
    Hasenoehrl C; Alexander CM; Azzarelli NN; Dabrowiak JC
    Electrophoresis; 2012 Apr; 33(8):1251-4. PubMed ID: 22589102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.