These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 21778051)
21. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview. Juan JC; Kartika DA; Wu TY; Hin TY Bioresour Technol; 2011 Jan; 102(2):452-60. PubMed ID: 21094045 [TBL] [Abstract][Full Text] [Related]
22. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Yan D; Lu Y; Chen YF; Wu Q Bioresour Technol; 2011 Jun; 102(11):6487-93. PubMed ID: 21474303 [TBL] [Abstract][Full Text] [Related]
23. Mycelium-bound lipase production from Aspergillus niger MYA 135, and its potential applications for the transesterification of ethanol. Colin VL; Baigorí MD; Pera LM J Basic Microbiol; 2011 Jun; 51(3):236-42. PubMed ID: 21298682 [TBL] [Abstract][Full Text] [Related]
24. Direct transesterification of fatty acids produced by Fusarium solani for biodiesel production: effect of carbon and nitrogen on lipid accumulation in the fungal biomass. Rasmey AM; Tawfik MA; Abdel-Kareem MM J Appl Microbiol; 2020 Apr; 128(4):1074-1085. PubMed ID: 31802586 [TBL] [Abstract][Full Text] [Related]
25. High yield and conversion of biodiesel from a nonedible feedstock (Pongamia pinnata). Sharma YC; Singh B; Korstad J J Agric Food Chem; 2010 Jan; 58(1):242-7. PubMed ID: 19954216 [TBL] [Abstract][Full Text] [Related]
26. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Cheirsilp B; Louhasakul Y Bioresour Technol; 2013 Aug; 142():329-37. PubMed ID: 23747444 [TBL] [Abstract][Full Text] [Related]
27. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Lam MK; Lee KT; Mohamed AR Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044 [TBL] [Abstract][Full Text] [Related]
28. A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Thanh le T; Okitsu K; Sadanaga Y; Takenaka N; Maeda Y; Bandow H Bioresour Technol; 2010 Jul; 101(14):5394-401. PubMed ID: 20219362 [TBL] [Abstract][Full Text] [Related]
29. Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production. Park GW; Fei Q; Jung K; Chang HN; Kim YC; Kim NJ; Choi JD; Kim S; Cho J Biotechnol J; 2014 Dec; 9(12):1536-46. PubMed ID: 25262978 [TBL] [Abstract][Full Text] [Related]
30. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Li X; Xu H; Wu Q Biotechnol Bioeng; 2007 Nov; 98(4):764-71. PubMed ID: 17497732 [TBL] [Abstract][Full Text] [Related]
31. [Lipids of filamentous fungi as a material for producing biodiesel fuel]. Sergeeva IaE; Galanina LA; Andrianova DA; Feofilova EP Prikl Biokhim Mikrobiol; 2008; 44(5):576-81. PubMed ID: 18822779 [TBL] [Abstract][Full Text] [Related]
32. Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Chen G; Fang B Bioresour Technol; 2011 Feb; 102(3):2635-40. PubMed ID: 21067915 [TBL] [Abstract][Full Text] [Related]
33. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Zhu LY; Zong MH; Wu H Bioresour Technol; 2008 Nov; 99(16):7881-5. PubMed ID: 18394882 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Karpagam R; Preeti R; Ashokkumar B; Varalakshmi P Ecotoxicol Environ Saf; 2015 Nov; 121():253-7. PubMed ID: 25838071 [TBL] [Abstract][Full Text] [Related]
35. Potential of aquatic oomycete as a novel feedstock for microbial oil grown on waste sugarcane bagasse. Patel A; Matsakas L; Pruthi PA; Pruthi V Environ Sci Pollut Res Int; 2018 Nov; 25(33):33443-33454. PubMed ID: 30264348 [TBL] [Abstract][Full Text] [Related]
36. Analyzing alternative bio-waste feedstocks for potential biodiesel production using time domain (TD)-NMR. Willson RM; Wiesman Z; Brenner A Waste Manag; 2010 Oct; 30(10):1881-8. PubMed ID: 20347586 [TBL] [Abstract][Full Text] [Related]
37. Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Galafassi S; Cucchetti D; Pizza F; Franzosi G; Bianchi D; Compagno C Bioresour Technol; 2012 May; 111():398-403. PubMed ID: 22366600 [TBL] [Abstract][Full Text] [Related]
38. Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Kamat S; Khot M; Zinjarde S; RaviKumar A; Gade WN Bioresour Technol; 2013 May; 135():246-53. PubMed ID: 23260270 [TBL] [Abstract][Full Text] [Related]
39. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998. Souza AF; Rodriguez DM; Ribeaux DR; Luna MA; Lima E Silva TA; Andrade RF; Gusmão NB; Campos-Takaki GM Int J Mol Sci; 2016 Sep; 17(10):. PubMed ID: 27669227 [TBL] [Abstract][Full Text] [Related]
40. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Gong Y; Jiang M Biotechnol Lett; 2011 Jul; 33(7):1269-84. PubMed ID: 21380528 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]