These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21778232)

  • 21. Human DNA polymerase ε is able to efficiently extend from multiple consecutive ribonucleotides.
    Göksenin AY; Zahurancik W; LeCompte KG; Taggart DJ; Suo Z; Pursell ZF
    J Biol Chem; 2012 Dec; 287(51):42675-84. PubMed ID: 23093410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human DNA polymerase η accommodates RNA for strand extension.
    Su Y; Egli M; Guengerich FP
    J Biol Chem; 2017 Nov; 292(44):18044-18051. PubMed ID: 28972162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribonucleotide discrimination by translesion synthesis DNA polymerases.
    Vaisman A; Woodgate R
    Crit Rev Biochem Mol Biol; 2018 Aug; 53(4):382-402. PubMed ID: 29972306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of novel reverse transcriptase and other RNA-associated catalytic activities by human DNA polymerase gamma: importance in mitochondrial DNA replication.
    Murakami E; Feng JY; Lee H; Hanes J; Johnson KA; Anderson KS
    J Biol Chem; 2003 Sep; 278(38):36403-9. PubMed ID: 12857740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.
    Ong JL; Loakes D; Jaroslawski S; Too K; Holliger P
    J Mol Biol; 2006 Aug; 361(3):537-50. PubMed ID: 16859707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gln(84) of moloney murine leukemia virus reverse transcriptase regulates the incorporation rates of ribonucleotides and deoxyribonucleotides.
    Liu S; Goff SP; Gao G
    FEBS Lett; 2006 Feb; 580(5):1497-501. PubMed ID: 16466720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection.
    Gao G; Orlova M; Georgiadis MM; Hendrickson WA; Goff SP
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):407-11. PubMed ID: 9012795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic basis of sugar selection by a Y-family DNA polymerase from Sulfolobus solfataricus P2.
    Sherrer SM; Beyer DC; Xia CX; Fowler JD; Suo Z
    Biochemistry; 2010 Nov; 49(47):10179-86. PubMed ID: 20973506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass.
    Ordonez H; Shuman S
    Nucleic Acids Res; 2014 Nov; 42(20):12722-34. PubMed ID: 25352547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Acyclovir, Foscarnet, and Ribonucleotides on Herpes Simplex Virus-1 DNA Polymerase: Mechanistic Insights and a Novel Mechanism for Preventing Stable Incorporation of Ribonucleotides into DNA.
    Vashishtha AK; Kuchta RD
    Biochemistry; 2016 Feb; 55(7):1168-77. PubMed ID: 26836009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unlocking the sugar "steric gate" of DNA polymerases.
    Brown JA; Suo Z
    Biochemistry; 2011 Feb; 50(7):1135-42. PubMed ID: 21226515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determinants of nucleotide sugar recognition in an archaeon DNA polymerase.
    Gardner AF; Jack WE
    Nucleic Acids Res; 1999 Jun; 27(12):2545-53. PubMed ID: 10352184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.
    Su Y; Egli M; Guengerich FP
    J Biol Chem; 2016 Feb; 291(8):3747-56. PubMed ID: 26740629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles.
    Kim HY; Kim HY; Jung J; Park S; Shin HJ; Kim K
    Virology; 2008 Jan; 370(1):205-12. PubMed ID: 17900649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2'-Deoxy-6-thioguanosine 5'-triphosphate as a substrate for purified human DNA polymerases and calf thymus terminal deoxynucleotidyltransferase in vitro.
    Ling YH; Nelson JA; Cheng YC; Anderson RS; Beattie KL
    Mol Pharmacol; 1991 Oct; 40(4):508-14. PubMed ID: 1921985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides.
    Astatke M; Ng K; Grindley ND; Joyce CM
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3402-7. PubMed ID: 9520378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Replication defect of moloney murine leukemia virus with a mutant reverse transcriptase that can incorporate ribonucleotides and deoxyribonucleotides.
    Gao G; Goff SP
    J Virol; 1998 Jul; 72(7):5905-11. PubMed ID: 9621052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases.
    Beck J; Vogel M; Nassal M
    Nucleic Acids Res; 2002 Apr; 30(7):1679-87. PubMed ID: 11917030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ribonucleotides embedded in template DNA impair mitochondrial RNA polymerase progression.
    Singh M; Posse V; Peter B; Falkenberg M; Gustafsson CM
    Nucleic Acids Res; 2022 Jan; 50(2):989-999. PubMed ID: 35018464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair.
    Chandramouly G; Zhao J; McDevitt S; Rusanov T; Hoang T; Borisonnik N; Treddinick T; Lopezcolorado FW; Kent T; Siddique LA; Mallon J; Huhn J; Shoda Z; Kashkina E; Brambati A; Stark JM; Chen XS; Pomerantz RT
    Sci Adv; 2021 Jun; 7(24):. PubMed ID: 34117057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.