These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 21778565)
1. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons. Chen X; Wang H; Wan H; Song K; Zhou G J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565 [TBL] [Abstract][Full Text] [Related]
2. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
3. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads. Zhou B; Chen X; Zhou B; Ding KH; Zhou G J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476 [TBL] [Abstract][Full Text] [Related]
5. On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons. Sun K; Ji P; Zhang J; Wang J; Li X; Xu X; Zhang H; Chi L Small; 2019 Apr; 15(15):e1804526. PubMed ID: 30891917 [TBL] [Abstract][Full Text] [Related]
6. Finite-size effects on electronic structure and local properties in passivated AA-stacked bilayer armchair-edge graphene nanoribbons. Chen X; Shi Z; Xiang S; Song K; Zhou G J Phys Condens Matter; 2017 Mar; 29(8):085301. PubMed ID: 28000622 [TBL] [Abstract][Full Text] [Related]
7. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries. Zhang A; Wu Y; Ke SH; Feng YP; Zhang C Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829 [TBL] [Abstract][Full Text] [Related]
8. Strain effect on electronic structures of graphene nanoribbons: A first-principles study. Sun L; Li Q; Ren H; Su H; Shi QW; Yang J J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789 [TBL] [Abstract][Full Text] [Related]
9. Strain dependence of the heat transport properties of graphene nanoribbons. Yeo PS; Loh KP; Gan CK Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343 [TBL] [Abstract][Full Text] [Related]
10. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons. Wu W; Lu P; Zhang Z; Guo W ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765 [TBL] [Abstract][Full Text] [Related]
11. Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons. Wang M; Li CM Nanoscale; 2011 May; 3(5):2324-8. PubMed ID: 21503364 [TBL] [Abstract][Full Text] [Related]
12. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions. Tung Nguyen L; Huy Pham C; Lien Nguyen V J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866 [TBL] [Abstract][Full Text] [Related]
13. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures. Ryou J; Park J; Kim G; Hong S J Phys Condens Matter; 2017 Jun; 29(24):245301. PubMed ID: 28443604 [TBL] [Abstract][Full Text] [Related]
14. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study. Kan EJ; Xiang HJ; Yang J; Hou JG J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370 [TBL] [Abstract][Full Text] [Related]
15. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons. Kumar SB; Jalil MB; Tan SG; Liang G J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192 [TBL] [Abstract][Full Text] [Related]
16. Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons. Lawrence J; Brandimarte P; Berdonces-Layunta A; Mohammed MSG; Grewal A; Leon CC; Sánchez-Portal D; de Oteyza DG ACS Nano; 2020 Apr; 14(4):4499-4508. PubMed ID: 32101402 [TBL] [Abstract][Full Text] [Related]
17. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls. Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294 [TBL] [Abstract][Full Text] [Related]
18. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions. Sanaeepur M Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399 [TBL] [Abstract][Full Text] [Related]
19. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices. Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350 [TBL] [Abstract][Full Text] [Related]
20. Thermoelectric properties of armchair graphene nanoribbons with array characteristics. Kuo DMT RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]