These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 21778565)

  • 21. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified tailoring the electronic phase and emergence of midstates in impurity-imbrued armchair graphene nanoribbons.
    Hien ND; Mirabbaszadeh K; Davoudiniya M; Hoi BD; Phuong LTT; Yarmohammadi M
    Sci Rep; 2019 Jul; 9(1):10651. PubMed ID: 31337797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy.
    Deniz O; Sánchez-Sánchez C; Dumslaff T; Feng X; Narita A; Müllen K; Kharche N; Meunier V; Fasel R; Ruffieux P
    Nano Lett; 2017 Apr; 17(4):2197-2203. PubMed ID: 28301723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping.
    Navarro-Santos P; Ricardo-Chávez JL; Reyes-Reyes M; Rivera JL; López-Sandoval R
    J Phys Condens Matter; 2010 Dec; 22(50):505302. PubMed ID: 21406793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes.
    Zheng B; Hermet P; Henrard L
    ACS Nano; 2010 Jul; 4(7):4165-73. PubMed ID: 20552993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clar's theory, pi-electron distribution, and geometry of graphene nanoribbons.
    Wassmann T; Seitsonen AP; Saitta AM; Lazzeri M; Mauri F
    J Am Chem Soc; 2010 Mar; 132(10):3440-51. PubMed ID: 20178362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons.
    Ajeel FN; Ahmed AB
    J Mol Model; 2023 Apr; 29(5):145. PubMed ID: 37067639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures.
    Kuo DMT
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of edge imperfections on the transport behavior of graphene nanomeshes.
    Ji X; Zhang J; Wang Y; Qian H; Yu Z
    Nanoscale; 2013 Mar; 5(6):2527-31. PubMed ID: 23426177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.
    Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H
    ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Charge transport through the multiple end zigzag edge states of armchair graphene nanoribbons and heterojunctions.
    Kuo DMT
    RSC Adv; 2024 Jun; 14(28):20113-20119. PubMed ID: 38915325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.
    Cloke RR; Marangoni T; Nguyen GD; Joshi T; Rizzo DJ; Bronner C; Cao T; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2015 Jul; 137(28):8872-5. PubMed ID: 26153349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation.
    Costa CD; Morbec JM
    J Phys Condens Matter; 2011 May; 23(20):205504. PubMed ID: 21540516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons.
    Xiao B; Ding YH; Sun CC
    Phys Chem Chem Phys; 2011 Feb; 13(7):2732-7. PubMed ID: 21152527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bond length pattern associated with charge carriers in armchair graphene nanoribbons.
    Teixeira JF; de Oliveira Neto PH; da Cunha WF; Ribeiro LA; E Silva GM
    J Mol Model; 2017 Sep; 23(10):293. PubMed ID: 28951991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons.
    Botello-Méndez AR; López-Urías F; Terrones M; Terrones H
    Nanotechnology; 2009 Aug; 20(32):325703. PubMed ID: 19620764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.