These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 21778565)
41. Uniform and perfectly linear current-voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires. Liu L; Li XF; Yan Q; Li QK; Zhang XH; Deng M; Qiu Q; Luo Y Phys Chem Chem Phys; 2016 Dec; 19(1):44-48. PubMed ID: 27918024 [TBL] [Abstract][Full Text] [Related]
42. Transport properties of graphene nanoribbons with side-attached organic molecules. Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698 [TBL] [Abstract][Full Text] [Related]
43. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. Kim WY; Kim KS J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178 [TBL] [Abstract][Full Text] [Related]
44. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Jia X; Hofmann M; Meunier V; Sumpter BG; Campos-Delgado J; Romo-Herrera JM; Son H; Hsieh YP; Reina A; Kong J; Terrones M; Dresselhaus MS Science; 2009 Mar; 323(5922):1701-5. PubMed ID: 19325109 [TBL] [Abstract][Full Text] [Related]
45. Orientation and Electronic Structures of Multilayered Graphene Nanoribbons Produced by Two-Zone Chemical Vapor Deposition. Kojima T; Bao Y; Zhang C; Liu S; Xu H; Nakae T; Loh KP; Sakaguchi H Langmuir; 2017 Oct; 33(40):10439-10445. PubMed ID: 28960996 [TBL] [Abstract][Full Text] [Related]
46. Scaling of excitons in graphene nanoribbons with armchair shaped edges. Zhu X; Su H J Phys Chem A; 2011 Nov; 115(43):11998-2003. PubMed ID: 21939213 [TBL] [Abstract][Full Text] [Related]
47. Electron transport properties of PtSe Zheng P; Jiang Y; Li H; Dai X RSC Adv; 2022 Sep; 12(40):25872-25880. PubMed ID: 36199596 [TBL] [Abstract][Full Text] [Related]
48. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons. Owens JR; Cruz-Silva E; Meunier V Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134 [TBL] [Abstract][Full Text] [Related]
49. Influence of Davoudiniya M; Yang B; Sanyal B Phys Chem Chem Phys; 2024 Jan; 26(3):1936-1949. PubMed ID: 38116600 [TBL] [Abstract][Full Text] [Related]
50. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. Owens FJ J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880 [TBL] [Abstract][Full Text] [Related]
51. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study. Peng X; Tang F; Copple A J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686 [TBL] [Abstract][Full Text] [Related]
52. Electronic transport in three-terminal triangular carbon nanopatches. Costa AL; Meunier V; Girão EC Nanotechnology; 2014 Jan; 25(4):045706. PubMed ID: 24394719 [TBL] [Abstract][Full Text] [Related]
53. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction. Jiang L; Liu Z; Zhao X; Zheng Y J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909 [TBL] [Abstract][Full Text] [Related]
54. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms. Zhang YH; Zhou KG; Xie KF; Zeng J; Zhang HL; Peng Y Nanotechnology; 2010 Feb; 21(6):065201. PubMed ID: 20057033 [TBL] [Abstract][Full Text] [Related]
55. Seamless Staircase Electrical Contact to Semiconducting Graphene Nanoribbons. Ma C; Liang L; Xiao Z; Puretzky AA; Hong K; Lu W; Meunier V; Bernholc J; Li AP Nano Lett; 2017 Oct; 17(10):6241-6247. PubMed ID: 28876939 [TBL] [Abstract][Full Text] [Related]
56. Highly tunable spin-dependent electron transport through carbon atomic chains connecting two zigzag graphene nanoribbons. Xu Y; Wang BJ; Ke SH; Yang W; Alzahrani AZ J Chem Phys; 2012 Sep; 137(10):104107. PubMed ID: 22979850 [TBL] [Abstract][Full Text] [Related]
57. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons. Liu ZM; Zhu Y; Yang ZQ J Chem Phys; 2011 Feb; 134(7):074708. PubMed ID: 21341870 [TBL] [Abstract][Full Text] [Related]
58. Electronic structure and transport of a carbon chain between graphene nanoribbon leads. Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839 [TBL] [Abstract][Full Text] [Related]
59. First-principles study on electron transport of carbon dumbbells C60-C(n)-C60. Wang RN; Zheng XH; Song LL; Zeng Z J Chem Phys; 2011 Jul; 135(4):044703. PubMed ID: 21806151 [TBL] [Abstract][Full Text] [Related]
60. The properties of BiSb nanoribbons from first-principles calculations. Lv HY; Liu HJ; Tan XJ; Pan L; Wen YW; Shi J; Tang XF Nanoscale; 2012 Jan; 4(2):511-7. PubMed ID: 22101571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]