These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 21778565)
81. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary. Dai QQ; Zhu YF; Jiang Q Phys Chem Chem Phys; 2014 Jun; 16(22):10607-13. PubMed ID: 24752487 [TBL] [Abstract][Full Text] [Related]
82. A gate-induced switch in zigzag graphene nanoribbons and charging effects. Cheraghchi H; Esmailzade H Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607 [TBL] [Abstract][Full Text] [Related]
83. Quantum Dots in Graphene Nanoribbons. Wang S; Kharche N; Costa Girão E; Feng X; Müllen K; Meunier V; Fasel R; Ruffieux P Nano Lett; 2017 Jul; 17(7):4277-4283. PubMed ID: 28603996 [TBL] [Abstract][Full Text] [Related]
84. Chirality effects in atomic vacancy-limited transport in metallic carbon nanotubes. Zeng H; Hu H; Leburton JP ACS Nano; 2010 Jan; 4(1):292-6. PubMed ID: 20000404 [TBL] [Abstract][Full Text] [Related]
85. Energy gaps in "metallic" single-walled carbon nanotubes. Ouyang M; Huang JL; Cheung CL; Lieber CM Science; 2001 Apr; 292(5517):702-5. PubMed ID: 11326093 [TBL] [Abstract][Full Text] [Related]
86. Ab Initio Properties of Hybrid Cove-Edged Graphene Nanoribbons as Metallic Electrodes for Peptide Sequencing via Transverse Tunneling Current. Zollo G; Civitarese T ACS Omega; 2022 Jul; 7(29):25164-25170. PubMed ID: 35910163 [TBL] [Abstract][Full Text] [Related]
87. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons. Veiga RG; Miwa RH; Srivastava GP J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000 [TBL] [Abstract][Full Text] [Related]
89. Thermoelectric properties of nanostructured systems based on narrow armchair graphene nanoribbons. Hozana C; Latgé A J Phys Condens Matter; 2019 Mar; 31(12):125303. PubMed ID: 30654349 [TBL] [Abstract][Full Text] [Related]
90. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. Wu W; Guo W; Zeng XC Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158 [TBL] [Abstract][Full Text] [Related]
91. Doping of Graphene Nanoribbons via Functional Group Edge Modification. Carbonell-Sanromà E; Hieulle J; Vilas-Varela M; Brandimarte P; Iraola M; Barragán A; Li J; Abadia M; Corso M; Sánchez-Portal D; Peña D; Pascual JI ACS Nano; 2017 Jul; 11(7):7355-7361. PubMed ID: 28636331 [TBL] [Abstract][Full Text] [Related]
92. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. Li Y; Zhou Z; Zhang S; Chen Z J Am Chem Soc; 2008 Dec; 130(49):16739-44. PubMed ID: 19554733 [TBL] [Abstract][Full Text] [Related]
93. A tight-binding study of the electron transport through single-walled carbon nanotube-graphene hybrid nanostructures. Srivastava J; Gaur A J Chem Phys; 2021 Dec; 155(24):244104. PubMed ID: 34972369 [TBL] [Abstract][Full Text] [Related]
94. N=8 Armchair Graphene Nanoribbons: Solution Synthesis and High Charge Carrier Mobility. Yao X; Zhang H; Kong F; Hinaut A; Pawlak R; Okuno M; Graf R; Horton PN; Coles SJ; Meyer E; Bogani L; Bonn M; Wang HI; Müllen K; Narita A Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202312610. PubMed ID: 37750665 [TBL] [Abstract][Full Text] [Related]
95. Growth Optimization and Device Integration of Narrow-Bandgap Graphene Nanoribbons. Borin Barin G; Sun Q; Di Giovannantonio M; Du CZ; Wang XY; Llinas JP; Mutlu Z; Lin Y; Wilhelm J; Overbeck J; Daniels C; Lamparski M; Sahabudeen H; Perrin ML; Urgel JI; Mishra S; Kinikar A; Widmer R; Stolz S; Bommert M; Pignedoli C; Feng X; Calame M; Müllen K; Narita A; Meunier V; Bokor J; Fasel R; Ruffieux P Small; 2022 Aug; 18(31):e2202301. PubMed ID: 35713270 [TBL] [Abstract][Full Text] [Related]
96. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884 [TBL] [Abstract][Full Text] [Related]