These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21778569)

  • 1. Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge.
    Fang F; Kennedy J; Futter J; Hopf T; Markwitz A; Manikandan E; Henshaw G
    Nanotechnology; 2011 Aug; 22(33):335702. PubMed ID: 21778569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and photocatalytic activity of WO(3) nanoparticles prepared by the arc discharge method in deionized water.
    Ashkarran AA; Iraji Zad A; Ahadian MM; Mahdavi Ardakani SA
    Nanotechnology; 2008 May; 19(19):195709. PubMed ID: 21825727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning.
    Leng JY; Xu XJ; Lv N; Fan HT; Zhang T
    J Colloid Interface Sci; 2011 Apr; 356(1):54-7. PubMed ID: 21220140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications.
    Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C
    Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method.
    Fang F; Futter J; Markwitz A; Kennedy J
    Nanotechnology; 2009 Jun; 20(24):245502. PubMed ID: 19468159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faster response of NO₂ sensing in graphene-WO₃ nanocomposites.
    Srivastava S; Jain K; Singh VN; Singh S; Vijayan N; Dilawar N; Gupta G; Senguttuvan TD
    Nanotechnology; 2012 May; 23(20):205501. PubMed ID: 22543228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and electrical properties of nanoparticulate tungsten oxide prepared by microwave plasma synthesis.
    Sagmeister M; Postl M; Brossmann U; List EJ; Klug A; Letofsky-Papst I; Szabó DV; Würschum R
    J Phys Condens Matter; 2011 Aug; 23(33):334206. PubMed ID: 21813964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol).
    Wolcott A; Kuykendall TR; Chen W; Chen S; Zhang JZ
    J Phys Chem B; 2006 Dec; 110(50):25288-96. PubMed ID: 17165974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure, phase, and electrical conductivity of nanocrystalline W₀.₉₅Ti(₀.₀₅)O₃ thin films.
    Kalidindi NR; Manciu FS; Ramana CV
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):863-8. PubMed ID: 21323357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive WO3 hollow-sphere gas sensors.
    Li XL; Lou TJ; Sun XM; Li YD
    Inorg Chem; 2004 Aug; 43(17):5442-9. PubMed ID: 15310226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catanionic-surfactant-controlled morphosynthesis and gas-sensing properties of corundum-type In(2)O(3).
    Fan Y; Li Z; Wang L; Zhan J
    Nanotechnology; 2009 Jul; 20(28):285501. PubMed ID: 19550008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single crystal WO(3) nanoflakes as quartz crystal microbalance sensing layer for ultrafast detection of trace sarin simulant.
    Zhao Y; He J; Yang M; Gao S; Zuo G; Yan C; Cheng Z
    Anal Chim Acta; 2009 Nov; 654(2):120-6. PubMed ID: 19854342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide.
    Li G; Zhang D; Yu JC; Leung MK
    Environ Sci Technol; 2010 Jun; 44(11):4276-81. PubMed ID: 20459055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sonochemical synthesis and characterization of Cu(1-x)Ni(x)WO4 nanoparticles/nanorods and their application in electrocatalytic hydrogen evolution.
    Selvan RK; Gedanken A
    Nanotechnology; 2009 Mar; 20(10):105602. PubMed ID: 19417522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospinning-derived Tb2(WO4)3:Eu(3+) nanowires: energy transfer and tunable luminescence properties.
    Hou Z; Cheng Z; Li G; Wang W; Peng C; Li C; Ma P; Yang D; Kang X; Lin J
    Nanoscale; 2011 Apr; 3(4):1568-74. PubMed ID: 21327213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods.
    Chen YJ; Zhu CL; Wang LJ; Gao P; Cao MS; Shi XL
    Nanotechnology; 2009 Jan; 20(4):045502. PubMed ID: 19417318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: nanowires, nanoneedles, nanoflowers, and tubular whiskers.
    Sun XH; Lam S; Sham TK; Heigl F; Jürgensen A; Wong NB
    J Phys Chem B; 2005 Mar; 109(8):3120-5. PubMed ID: 16851331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting.
    Ishihara H; Kannarpady GK; Khedir KR; Woo J; Trigwell S; Biris AS
    Phys Chem Chem Phys; 2011 Nov; 13(43):19553-60. PubMed ID: 21970978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From layered double hydroxide to spinel nanostructures: facile synthesis and characterization of nanoplatelets and nanorods.
    Sun G; Sun L; Wen H; Jia Z; Huang K; Hu C
    J Phys Chem B; 2006 Jul; 110(27):13375-80. PubMed ID: 16821857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flower-like tungsten oxide particles: synthesis, characterization and dimethyl methylphosphonate sensing properties.
    Zhao Y; Chen H; Wang X; He J; Yu Y; He H
    Anal Chim Acta; 2010 Aug; 675(1):36-41. PubMed ID: 20708113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.