These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

626 related articles for article (PubMed ID: 21778997)

  • 21. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein.
    Zhang L; Chen T; Ban H; Liu L
    Nanoscale; 2014 Jul; 6(14):7786-91. PubMed ID: 24811747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.
    Cho H; Rho H; Kim JH; Chae SH; Pham TV; Seo TH; Kim HY; Ha JS; Kim HC; Lee SH; Kim MJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40801-40809. PubMed ID: 29064660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity.
    Malig J; Jux N; Guldi DM
    Acc Chem Res; 2013 Jan; 46(1):53-64. PubMed ID: 22916796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.
    Hsieh CT; Lee CE; Chen YF; Chang JK; Teng HS
    Nanoscale; 2015 Nov; 7(44):18663-70. PubMed ID: 26498343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal and thermoelectric properties of graphene.
    Xu Y; Li Z; Duan W
    Small; 2014 Jun; 10(11):2182-99. PubMed ID: 24610791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene and its derivatives: switching ON and OFF.
    Chen Y; Zhang B; Liu G; Zhuang X; Kang ET
    Chem Soc Rev; 2012 Jul; 41(13):4688-707. PubMed ID: 22648376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved Performance of Graphene in Heat Dissipation when Combined with an Orientated Magnetic Carbon Fiber Skeleton under Low-Temperature Thermal Annealing.
    Li J; Lei R; Lai J; Chen X; Li Y
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30909369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design, Preparation, and Properties.
    Kwon YJ; Park JB; Jeon YP; Hong JY; Park HS; Lee JU
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33923627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance.
    Rho H; Lee S; Bae S; Kim TW; Lee DS; Lee HJ; Hwang JY; Jeong T; Kim S; Ha JS; Lee SH
    Sci Rep; 2015 Aug; 5():12710. PubMed ID: 26234425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermally Reduced Graphene Oxide/Carbon Nanotube Composite Films for Thermal Packaging Applications.
    Yuan GJ; Xie JF; Li HH; Shan B; Zhang XX; Liu J; Li L; Tian YZ
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 32284495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure.
    Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z
    Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.
    Warzoha RJ; Fleischer AS
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12868-76. PubMed ID: 24983698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Latent Heat Storage and Thermal Efficacy of Carboxymethyl Cellulose Carbon Foams Containing Ag, Al, Carbon Nanotubes, and Graphene in a Phase Change Material.
    Kim HG; Kim YS; Kwac LK; Shin HJ; Lee SO; Lee US; Shin HK
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30696012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heat conduction in the Frenkel-Kontorova model.
    Hu B; Yang L
    Chaos; 2005 Mar; 15(1):15119. PubMed ID: 15836296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-makisu: highly anisotropic two-dimensional carbon allotropes made by weaving together nanotubes.
    Zhao L; Liu W; Yi W; Hu T; Khodagholian D; Gu F; Lin H; Zurek E; Zheng Y; Miao M
    Nanoscale; 2020 Jan; 12(1):347-355. PubMed ID: 31825450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.