These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2177913)
1. Energy coupling in periplasmic permeases: the histidine permease as a model system. Ames GF Res Microbiol; 1990; 141(3):341-8. PubMed ID: 2177913 [No Abstract] [Full Text] [Related]
2. The role of ATP as the energy source for maltose transport in Escherichia coli. Dean DA; Davidson AL; Nikaido H Res Microbiol; 1990; 141(3):348-52. PubMed ID: 2177914 [No Abstract] [Full Text] [Related]
3. Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport. Bishop L; Agbayani R; Ambudkar SV; Maloney PC; Ames GF Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6953-7. PubMed ID: 2674940 [TBL] [Abstract][Full Text] [Related]
4. The nucleotide-binding site of HisP, a membrane protein of the histidine permease. Identification of amino acid residues photoaffinity labeled by 8-azido-ATP. Mimura CS; Admon A; Hurt KA; Ames GF J Biol Chem; 1990 Nov; 265(32):19535-42. PubMed ID: 2246240 [TBL] [Abstract][Full Text] [Related]
5. Binding protein-independent histidine permease mutants. Uncoupling of ATP hydrolysis from transmembrane signaling. Petronilli V; Ames GF J Biol Chem; 1991 Sep; 266(25):16293-6. PubMed ID: 1885562 [TBL] [Abstract][Full Text] [Related]
6. ATP-binding sites in the membrane components of histidine permease, a periplasmic transport system. Hobson AC; Weatherwax R; Ames GF Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7333-7. PubMed ID: 6239289 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). Liu CE; Liu PQ; Ames GF J Biol Chem; 1997 Aug; 272(35):21883-91. PubMed ID: 9268321 [TBL] [Abstract][Full Text] [Related]
8. Characterization of transport through the periplasmic histidine permease using proteoliposomes reconstituted by dialysis. Liu CE; Ames GF J Biol Chem; 1997 Jan; 272(2):859-66. PubMed ID: 8995374 [TBL] [Abstract][Full Text] [Related]
9. Energy coupling in bacterial periplasmic transport systems. Studies in intact Escherichia coli cells. Joshi AK; Ahmed S; Ferro-Luzzi Ames G J Biol Chem; 1989 Feb; 264(4):2126-33. PubMed ID: 2644255 [TBL] [Abstract][Full Text] [Related]
10. Bacterial periplasmic permeases as model systems for multidrug resistance (MDR) and the cystic fibrosis transmembrane conductance regulator (CFTR). Ames GF Soc Gen Physiol Ser; 1993; 48():77-94. PubMed ID: 7684868 [No Abstract] [Full Text] [Related]
11. The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface. Baichwal V; Liu D; Ames GF Proc Natl Acad Sci U S A; 1993 Jan; 90(2):620-4. PubMed ID: 7678461 [TBL] [Abstract][Full Text] [Related]
12. A chimeric nucleotide-binding protein, encoded by a hisP-malK hybrid gene, is functional in maltose transport in Salmonella typhimurium. Schneider E; Walter C Mol Microbiol; 1991 Jun; 5(6):1375-83. PubMed ID: 1787792 [TBL] [Abstract][Full Text] [Related]
13. Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro. Kuehn MJ; Schekman R; Ljungdahl PO J Cell Biol; 1996 Nov; 135(3):585-95. PubMed ID: 8909535 [TBL] [Abstract][Full Text] [Related]
14. Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases. Ames GF; Liu CE; Joshi AK; Nikaido K J Biol Chem; 1996 Jun; 271(24):14264-70. PubMed ID: 8662800 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical potential releases a membrane-bound secretion intermediate of maltose-binding protein in Escherichia coli. Geller BL J Bacteriol; 1990 Sep; 172(9):4870-6. PubMed ID: 2203734 [TBL] [Abstract][Full Text] [Related]
16. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. Ames GF; Mimura CS; Shyamala V FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378 [TBL] [Abstract][Full Text] [Related]
17. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Doige CA; Ames GF Annu Rev Microbiol; 1993; 47():291-319. PubMed ID: 7504904 [TBL] [Abstract][Full Text] [Related]
18. Overproduction of the membrane-bound components of the histidine permease from Salmonella typhimurium: identification of the M protein. Ames GF; Nikaido K; Hobson A; Malcolm B Biochimie; 1985 Jan; 67(1):149-54. PubMed ID: 3888290 [TBL] [Abstract][Full Text] [Related]
19. Energy-coupling of the transport system of Escherichia coli dependent on maltose-binding protein. Ferenci T; Boos W; Schwartz M; Szmelcman S Eur J Biochem; 1977 May; 75(1):187-93. PubMed ID: 140802 [No Abstract] [Full Text] [Related]
20. Modulation of ATPase activity by physical disengagement of the ATP-binding domains of an ABC transporter, the histidine permease. Liu PQ; Liu CE; Ames GF J Biol Chem; 1999 Jun; 274(26):18310-8. PubMed ID: 10373434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]