BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21779318)

  • 21. Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition through activation of PPAR-alpha nuclear receptors.
    Mazzola C; Medalie J; Scherma M; Panlilio LV; Solinas M; Tanda G; Drago F; Cadet JL; Goldberg SR; Yasar S
    Learn Mem; 2009 May; 16(5):332-7. PubMed ID: 19403796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents.
    Griebel G; Stemmelin J; Lopez-Grancha M; Fauchey V; Slowinski F; Pichat P; Dargazanli G; Abouabdellah A; Cohen C; Bergis OE
    Sci Rep; 2018 Feb; 8(1):2416. PubMed ID: 29403000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats.
    Solinas M; Justinova Z; Goldberg SR; Tanda G
    J Neurochem; 2006 Jul; 98(2):408-19. PubMed ID: 16805835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The FAAH inhibitor URB597 efficiently reduces tyrosine hydroxylase expression through CB₁- and FAAH-independent mechanisms.
    Bosier B; Muccioli GG; Lambert DM
    Br J Pharmacol; 2013 Jun; 169(4):794-807. PubMed ID: 22970888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oleoylethanolamide and Palmitoylethanolamide Enhance IFNβ-Induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells.
    Camoglio C; Balla J; Fadda P; Dedoni S
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacological blockade of fatty acid amide hydrolase (FAAH) by URB597 improves memory and changes the phenotype of hippocampal microglia despite ethanol exposure.
    Rivera P; Fernández-Arjona MDM; Silva-Peña D; Blanco E; Vargas A; López-Ávalos MD; Grondona JM; Serrano A; Pavón FJ; Rodríguez de Fonseca F; Suárez J
    Biochem Pharmacol; 2018 Nov; 157():244-257. PubMed ID: 30098312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide.
    Fowler CJ; Jonsson KO; Tiger G
    Biochem Pharmacol; 2001 Sep; 62(5):517-26. PubMed ID: 11585048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat.
    Murillo-Rodriguez E; Désarnaud F; Prospéro-García O
    Life Sci; 2006 May; 79(1):30-7. PubMed ID: 16434061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages.
    Sun YX; Tsuboi K; Zhao LY; Okamoto Y; Lambert DM; Ueda N
    Biochim Biophys Acta; 2005 Oct; 1736(3):211-20. PubMed ID: 16154384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increase of waking and reduction of NREM and REM sleep after nitric oxide synthase inhibition: prevention with GABA(A) or adenosine A(1) receptor agonists.
    Monti JM; Jantos H; Monti D
    Behav Brain Res; 2001 Aug; 123(1):23-35. PubMed ID: 11377727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The involvement of dopamine in the modulation of sleep and waking.
    Monti JM; Monti D
    Sleep Med Rev; 2007 Apr; 11(2):113-33. PubMed ID: 17275369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters.
    Moise AM; Eisenstein SA; Astarita G; Piomelli D; Hohmann AG
    Psychopharmacology (Berl); 2008 Oct; 200(3):333-46. PubMed ID: 18545985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the D3 preferring dopamine agonist pramipexole on sleep and waking, locomotor activity and striatal dopamine release in rats.
    Lagos P; Scorza C; Monti JM; Jantos H; Reyes-Parada M; Silveira R; Ponzoni A
    Eur Neuropsychopharmacol; 1998 May; 8(2):113-20. PubMed ID: 9619689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Circulating N-Acylethanolamine Levels with Clinical and Laboratory End Points in Hemodialysis Patients.
    Pai AY; Wenziger C; Streja E; Argueta DA; DiPatrizio NV; Rhee CM; Vaziri ND; Kalantar-Zadeh K; Piomelli D; Moradi H
    Am J Nephrol; 2021; 52(1):59-68. PubMed ID: 33601382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase.
    Huitron-Resendiz S; Sanchez-Alavez M; Wills DN; Cravatt BF; Henriksen SJ
    Sleep; 2004 Aug; 27(5):857-65. PubMed ID: 15453543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatty acid amide hydrolase inhibitors--progress and potential.
    Khanna IK; Alexander CW
    CNS Neurol Disord Drug Targets; 2011 Aug; 10(5):545-58. PubMed ID: 21631410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence that activation of nuclear peroxisome proliferator-activated receptor alpha (PPARα) modulates sleep homeostasis in rats.
    Murillo-Rodríguez E; Guzmán K; Arankowsky-Sandoval G; Salas-Crisóstomo M; Jiménez-Moreno R; Arias-Carrión O
    Brain Res Bull; 2016 Oct; 127():156-163. PubMed ID: 27646482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models.
    Sasso O; Moreno-Sanz G; Martucci C; Realini N; Dionisi M; Mengatto L; Duranti A; Tarozzo G; Tarzia G; Mor M; Bertorelli R; Reggiani A; Piomelli D
    Pain; 2013 Mar; 154(3):350-360. PubMed ID: 23218523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training.
    Bystrowska B; Smaga I; Frankowska M; Filip M
    Prog Neuropsychopharmacol Biol Psychiatry; 2014 Apr; 50():1-10. PubMed ID: 24334211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serotonin control of sleep-wake behavior.
    Monti JM
    Sleep Med Rev; 2011 Aug; 15(4):269-81. PubMed ID: 21459634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.