BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21779997)

  • 1. Conceptual thinking for in silico prioritization of candidate disease genes.
    Tiffin N
    Methods Mol Biol; 2011; 760():175-87. PubMed ID: 21779997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prioritization analysis of disease association by data-mining of functional annotation of human genes.
    Taniya T; Tanaka S; Yamaguchi-Kabata Y; Hanaoka H; Yamasaki C; Maekawa H; Barrero RA; Lenhard B; Datta MW; Shimoyama M; Bumgarner R; Chakraborty R; Hopkinson I; Jia L; Hide W; Auffray C; Minoshima S; Imanishi T; Gojobori T
    Genomics; 2012 Jan; 99(1):1-9. PubMed ID: 22019378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Web tools for the prioritization of candidate disease genes.
    Oti M; Ballouz S; Wouters MA
    Methods Mol Biol; 2011; 760():189-206. PubMed ID: 21779998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico searching for disease-associated functional DNA variants.
    Sethumadhavan R; Doss CG; Rajasekaran R
    Methods Mol Biol; 2011; 760():239-50. PubMed ID: 21780001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative systems biology approaches to identify and prioritize disease and drug candidate genes.
    Kaimal V; Sardana D; Bardes EE; Gudivada RC; Chen J; Jegga AG
    Methods Mol Biol; 2011; 700():241-59. PubMed ID: 21204038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of vocabularies, representations and ranking algorithms for gene prioritization by text mining.
    Yu S; Van Vooren S; Tranchevent LC; De Moor B; Moreau Y
    Bioinformatics; 2008 Aug; 24(16):i119-25. PubMed ID: 18689812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation and discovery of genotype-phenotype associations in chronic diseases using linked data.
    Pathak J; Kiefer R; Freimuth R; Chute C
    Stud Health Technol Inform; 2012; 180():549-53. PubMed ID: 22874251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kernel-based data fusion for gene prioritization.
    De Bie T; Tranchevent LC; van Oeffelen LM; Moreau Y
    Bioinformatics; 2007 Jul; 23(13):i125-32. PubMed ID: 17646288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico analysis of the exome for gene discovery.
    Hinchcliffe M; Webster P
    Methods Mol Biol; 2011; 760():109-28. PubMed ID: 21779993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.
    Hindumathi V; Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2014 Jun; 10(6):1450-60. PubMed ID: 24647578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data mining of the GAW14 simulated data using rough set theory and tree-based methods.
    Wei LY; Huang CL; Chen CH
    BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S133. PubMed ID: 16451592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritization of candidate disease genes for metabolic syndrome by computational analysis of its defining phenotypes.
    Tiffin N; Okpechi I; Perez-Iratxeta C; Andrade-Navarro MA; Ramesar R
    Physiol Genomics; 2008 Sep; 35(1):55-64. PubMed ID: 18612082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotype mining for functional genomics and gene discovery.
    Groth P; Leser U; Weiss B
    Methods Mol Biol; 2011; 760():159-73. PubMed ID: 21779996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent approaches to the prioritization of candidate disease genes.
    Doncheva NT; Kacprowski T; Albrecht M
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(5):429-42. PubMed ID: 22689539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative literature and data mining to rank disease candidate genes.
    Wu C; Zhu C; Jegga AG
    Methods Mol Biol; 2014; 1159():207-26. PubMed ID: 24788269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Druggability of human disease genes.
    Sakharkar MK; Sakharkar KR; Pervaiz S
    Int J Biochem Cell Biol; 2007; 39(6):1156-64. PubMed ID: 17446117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital candidate gene approach (DigiCGA) for identification of cancer genes.
    Zhu MJ; Li X; Zhao SH
    Methods Mol Biol; 2010; 653():105-29. PubMed ID: 20721740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of genes to genetically inherited diseases using data mining.
    Perez-Iratxeta C; Bork P; Andrade MA
    Nat Genet; 2002 Jul; 31(3):316-9. PubMed ID: 12006977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PolyMAPr: programs for polymorphism database mining, annotation, and functional analysis.
    Freimuth RR; Stormo GD; McLeod HL
    Hum Mutat; 2005 Feb; 25(2):110-7. PubMed ID: 15643605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.