These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21780006)

  • 1. In silico prediction of post-translational modifications.
    Liu C; Li H
    Methods Mol Biol; 2011; 760():325-40. PubMed ID: 21780006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current approaches for global post-translational modification discovery and mass spectrometric analysis.
    Hoffman MD; Sniatynski MJ; Kast J
    Anal Chim Acta; 2008 Oct; 627(1):50-61. PubMed ID: 18790127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-translational modifications: a challenge for proteomics and bioinformatics.
    Appel RD; Bairoch A
    Proteomics; 2004 Jun; 4(6):1525-6. PubMed ID: 15174121
    [No Abstract]   [Full Text] [Related]  

  • 6. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unrestrictive identification of post-translational modifications through peptide mass spectrometry.
    Tanner S; Pevzner PA; Bafna V
    Nat Protoc; 2006; 1(1):67-72. PubMed ID: 17406213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of transcriptional factor-binding sites.
    Oshchepkov DY; Levitsky VG
    Methods Mol Biol; 2011; 760():251-67. PubMed ID: 21780002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do you do text?
    Blaschke C; Yeh A; Camon E; Colosimo M; Apweiler R; Hirschman L; Valencia A
    Bioinformatics; 2005 Dec; 21(23):4199-200. PubMed ID: 16195360
    [No Abstract]   [Full Text] [Related]  

  • 10. Prediction of posttranslational modifications using intact-protein mass spectrometric data.
    Holmes MR; Giddings MC
    Anal Chem; 2004 Jan; 76(2):276-82. PubMed ID: 14719871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of allergenic proteins.
    Sircar G; Saha B; Bhattacharya SG; Saha S
    Methods Mol Biol; 2014; 1184():375-88. PubMed ID: 25048136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of lysine post-translational modifications using bioinformatic tools.
    Schwartz D
    Essays Biochem; 2012; 52():165-77. PubMed ID: 22708570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying hybrid reasoning to mine for associative features in biological data.
    Galitsky BA; Kuznetsov SO; Vinogradov DV
    J Biomed Inform; 2007 Jun; 40(3):203-20. PubMed ID: 16942918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods for predicting protein-protein interactions.
    Pitre S; Alamgir M; Green JR; Dumontier M; Dehne F; Golshani A
    Adv Biochem Eng Biotechnol; 2008; 110():247-67. PubMed ID: 18202838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteomics toolbox: computational biology, protein chemistry and mass spectrometry.
    Hjerrild M; Gammeltoft S
    FEBS Lett; 2006 Sep; 580(20):4764-70. PubMed ID: 16914146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning: an indispensable tool in bioinformatics.
    Inza I; Calvo B; Armañanzas R; Bengoetxea E; Larrañaga P; Lozano JA
    Methods Mol Biol; 2010; 593():25-48. PubMed ID: 19957143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using product kernels to predict protein interactions.
    Martin S; Brown WM; Faulon JL
    Adv Biochem Eng Biotechnol; 2008; 110():215-45. PubMed ID: 17922100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the protein SUMO modification sites based on Properties Sequential Forward Selection (PSFS).
    Liu B; Li S; Wang Y; Lu L; Li Y; Cai Y
    Biochem Biophys Res Commun; 2007 Jun; 358(1):136-9. PubMed ID: 17470363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence techniques for bioinformatics.
    Narayanan A; Keedwell EC; Olsson B
    Appl Bioinformatics; 2002; 1(4):191-222. PubMed ID: 15130837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MeMo: a web tool for prediction of protein methylation modifications.
    Chen H; Xue Y; Huang N; Yao X; Sun Z
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W249-53. PubMed ID: 16845004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.