These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21780313)

  • 1. Ion flow crossing over a polyelectrolyte diode on a microfluidic chip.
    Han JH; Kim KB; Bae JH; Kim BJ; Kang CM; Kim HC; Chung TD
    Small; 2011 Sep; 7(18):2629-39. PubMed ID: 21780313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip.
    Noh J; Park S; Boo H; Kim HC; Chung TD
    Lab Chip; 2011 Feb; 11(4):664-71. PubMed ID: 21135953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent molecular logic gates using microfluidic devices.
    Kou S; Lee HN; van Noort D; Swamy KM; Kim SH; Soh JH; Lee KM; Nam SW; Yoon J; Park S
    Angew Chem Int Ed Engl; 2008; 47(5):872-6. PubMed ID: 17943951
    [No Abstract]   [Full Text] [Related]  

  • 4. Ion transport through polyelectrolyte multilayers.
    Carregal-Romero S; Rinklin P; Schulze S; Schäfer M; Ott A; Hühn D; Yu X; Wolfrum B; Weitzel KM; Parak WJ
    Macromol Rapid Commun; 2013 Dec; 34(23-24):1820-6. PubMed ID: 24327382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical expressions for pH-regulated electroosmotic flow in microchannels.
    Hsu JP; Huang CH
    Colloids Surf B Biointerfaces; 2012 May; 93():260-2. PubMed ID: 22236502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules.
    Kantak C; Beyer S; Yobas L; Bansal T; Trau D
    Lab Chip; 2011 Mar; 11(6):1030-5. PubMed ID: 21218225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical techniques for microfluidic applications.
    Sassa F; Morimoto K; Satoh W; Suzuki H
    Electrophoresis; 2008 May; 29(9):1787-800. PubMed ID: 18384068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices.
    Plecis A; Tazid J; Pallandre A; Martinhon P; Deslouis C; Chen Y; Haghiri-Gosnet AM
    Lab Chip; 2010 May; 10(10):1245-53. PubMed ID: 20445876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion diode logics for pH control.
    Gabrielsson EO; Tybrandt K; Berggren M
    Lab Chip; 2012 Jul; 12(14):2507-13. PubMed ID: 22596219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single molecule spectroscopy reveals heterogeneous transport mechanisms for molecular ions in a polyelectrolyte polymer brush.
    Reznik C; Estillore N; Advincula RC; Landes CF
    J Phys Chem B; 2009 Nov; 113(44):14611-8. PubMed ID: 19813742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors.
    Klauke N; Monaghan P; Sinclair G; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):788-93. PubMed ID: 16738732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Fluidic batteries" as low-cost sources of power in paper-based microfluidic devices.
    Thom NK; Yeung K; Pillion MB; Phillips ST
    Lab Chip; 2012 Apr; 12(10):1768-70. PubMed ID: 22450846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.
    Gillespie D; Khair AS; Bardhan JP; Pennathur S
    J Colloid Interface Sci; 2011 Jul; 359(2):520-9. PubMed ID: 21531429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast active mixer using polyelectrolytic ion extractor.
    Chun H; Kim HC; Chung TD
    Lab Chip; 2008 May; 8(5):764-71. PubMed ID: 18432347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal lens technique to study the effect of pH on electronic energy transfer in organic dye mixtures.
    Kurian A; George SD; Bindhu CV; Nampoori VP; Vallabhan CP
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):678-82. PubMed ID: 17045520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switchable pH actuators and 3D integrated salt bridges as new strategies for reconfigurable microfluidic free-flow electrophoretic separation.
    Cheng LJ; Chang HC
    Lab Chip; 2014 Mar; 14(5):979-87. PubMed ID: 24430103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
    Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partition coefficient measurements in picoliter drops using a segmented flow microfluidic device.
    Marine NA; Klein SA; Posner JD
    Anal Chem; 2009 Feb; 81(4):1471-6. PubMed ID: 19143544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B.
    Samy R; Glawdel T; Ren CL
    Anal Chem; 2008 Jan; 80(2):369-75. PubMed ID: 18081260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.