These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21780461)

  • 1. Modification of silicon substrate using low-energy proton beam for selective growth of CNTs.
    Kim H; Lee TJ; Kim S; Lee H
    J Nanosci Nanotechnol; 2011 May; 11(5):4378-83. PubMed ID: 21780461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterned array of nanoparticles on substrates via contact printing method with CNTs/AAO stamp.
    Kim YS; Ahn HJ; Nam SH; Lee SH; Shim HS; Kim WB
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4803-7. PubMed ID: 19049112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface passivation dictated site-selective growth of aligned carbon nanotubes.
    Sen S; Raju M; Jacob C
    Nanoscale; 2020 Nov; 12(45):23042-23051. PubMed ID: 33179682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Modification of a Metallic Substrate for CVD Growth of Carbon Nanotubes.
    Li X; Baker-Fales M; Almkhelfe H; Gaede NR; Harris TS; Amama PB
    Sci Rep; 2018 Mar; 8(1):4349. PubMed ID: 29531239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the growth and microstructure of carbon nanotubes grown by thermal chemical vapor deposition.
    Handuja S; Srivastava P; Vankar V
    Nanoscale Res Lett; 2010 May; 5(7):1211-6. PubMed ID: 20596549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide--selective functionalization of Si3N4 and SiO2.
    Liu LH; Michalak DJ; Chopra TP; Pujari SP; Cabrera W; Dick D; Veyan JF; Hourani R; Halls MD; Zuilhof H; Chabal YJ
    J Phys Condens Matter; 2016 Mar; 28(9):094014. PubMed ID: 26870908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.
    Jang M; Lee J; Park T; Lee J; Yang J; Yi W
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2992-5. PubMed ID: 27455748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of a well-defined amino-terminated self-assembled monolayer and copper microlines on a polyimide substrate covered with an oxide nanoskin.
    Hozumi A; Asakura S; Fuwa A; Shirahata N; Kameyama T
    Langmuir; 2005 Aug; 21(18):8234-42. PubMed ID: 16114926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-microscopic imaging of single-walled carbon nanotubes grown on silicon and silicon oxide substrates.
    Homma Y; Takagi D; Suzuki S; Kanzaki KI; Kobayashi Y
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i3-7. PubMed ID: 16157637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer.
    Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron beam induced etching of carbon nanotubes enhanced by secondary electrons in oxygen.
    Yoshida H; Tomita Y; Soma K; Takeda S
    Nanotechnology; 2017 May; 28(19):195301. PubMed ID: 28358725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The variation of surface contact angles according to the diameter of carbon nanotubes.
    Choi EC; Choi WS; Hong B
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3805-9. PubMed ID: 19504923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant-resisted assembly of Fe-containing nanoparticles for site-specific growth of SWNTs on Si surface.
    He M; Ling X; Zhang J; Liu Z
    J Phys Chem B; 2005 Jun; 109(21):10946-51. PubMed ID: 16852332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum oxide mask fabrication by focused ion beam implantation combined with wet etching.
    Liu Z; Iltanen K; Chekurov N; Grigoras K; Tittonen I
    Nanotechnology; 2013 May; 24(17):175304. PubMed ID: 23571491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits.
    Tu F; Drost M; Szenti I; Kiss J; Kónya Z; Marbach H
    Beilstein J Nanotechnol; 2017; 8():2592-2605. PubMed ID: 29259874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution soft X-ray photoelectron spectroscopic studies and scanning auger microscopy studies of the air oxidation of alkylated silicon(111) surfaces.
    Webb LJ; Michalak DJ; Biteen JS; Brunschwig BS; Chan AS; Knapp DW; Meyer HM; Nemanick EJ; Traub MC; Lewis NS
    J Phys Chem B; 2006 Nov; 110(46):23450-9. PubMed ID: 17107197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon oxide nanowires: facile and controlled large area fabrication of vertically oriented silicon oxide nanowires for photoluminescence and sensor applications.
    Alabi TR; Yuan D; Bucknall D; Das S
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8932-8. PubMed ID: 23915216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of Reduced Graphene Oxide on Hydrogen-Terminated Silicon Substrate as a Transparent Conductive Protector.
    Tu Y; Utsunomiya T; Kokufu S; Soga M; Ichii T; Sugimura H
    Langmuir; 2017 Oct; 33(41):10765-10771. PubMed ID: 28930635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterned carbon nanotubes fabricated by the combination of microcontact printing and diblock copolymer micelles.
    Xu P; Ji X; Qi J; Yang H; Zheng W; Abetz V; Jiang S; Shen J
    J Nanosci Nanotechnol; 2010 Jan; 10(1):508-13. PubMed ID: 20352884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.