BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21780512)

  • 1. Synthesis of mesoporous anatase TiO2 nanotubes by a hydrothermal treatment and their use in solid-state dye-sensitized solar cells.
    Seo MK; Park SJ
    J Nanosci Nanotechnol; 2011 May; 11(5):4633-8. PubMed ID: 21780512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Acid Treatment and Reactive Temperature on the Formation of TiO2 Nanotubes.
    Viet PV; Phan BT; Hieu le V; Thi CM
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5202-6. PubMed ID: 26373106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Multiwalled TiO2 Nanotubes Under Weak Alkaline Conditions for Dye-Sensitized Solar Cells.
    Amoli V; Sinha AK
    J Nanosci Nanotechnol; 2015 Jan; 15(1):726-33. PubMed ID: 26328434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of anatase/rutile mixed-phase titania nanoparticles for dye-sensitized solar cells.
    Hwang YK; Park SS; Lim JH; Won YS; Huh S
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2255-61. PubMed ID: 23755675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2.
    Pavasupree S; Ngamsinlapasathian S; Suzuki Y; Yoshikawa S
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3685-92. PubMed ID: 17256316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced power conversion efficiency of dye-sensitized solar cells using nanoparticle/nanotube double layered film.
    Sun KC; Yun SH; Yoon CH; Ko HH; Yi S; Jeong SH
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7938-43. PubMed ID: 24266168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties.
    Zhang Q; Li S; Li Y; Wang H
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11109-13. PubMed ID: 22409066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and photocatalytic applications of Ag/TiO2-nanotubes.
    Guo G; Yu B; Yu P; Chen X
    Talanta; 2009 Aug; 79(3):570-5. PubMed ID: 19576414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsphere assembly of TiO2 mesoporous nanosheets with highly exposed (101) facets and application in a light-trapping quasi-solid-state dye-sensitized solar cell.
    Tao X; Ruan P; Zhang X; Sun H; Zhou X
    Nanoscale; 2015 Feb; 7(8):3539-47. PubMed ID: 25631573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells.
    Amoli V; Bhat S; Maurya A; Banerjee B; Bhaumik A; Sinha AK
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26022-35. PubMed ID: 26574644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application.
    Peng W; Yanagida M; Han L; Ahmed S
    Nanotechnology; 2011 Jul; 22(27):275709. PubMed ID: 21597134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Room-Temperature Synthesis of Mesoporous TiO
    Alduraibi M; Hezam M; Al-Ruhaimi B; El-Toni AM; Algarni A; Abdel-Rahman M; Qing W; Aldwayyan A
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal processing of hydrogen titanate/anatase-titania nanotubes and their application as strong dye-adsorbents.
    Harsha N; Ranya KR; Babitha KB; Shukla S; Biju S; Reddy ML; Warrier KG
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1175-87. PubMed ID: 21456156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells.
    Shaikh SF; Mane RS; Min BK; Hwang YJ; Joo OS
    Sci Rep; 2016 Feb; 6():20103. PubMed ID: 26857963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sol-Gel Processed TiO
    Tsvetkov N; Larina L; Ku Kang J; Shevaleevskiy O
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32050590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of brookite TiO
    Xu J; Wu S; Jin J; Peng T
    Nanoscale; 2016 Nov; 8(44):18771-18781. PubMed ID: 27801467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes.
    Khan MA; Jung HT; Yang OB
    J Phys Chem B; 2006 Apr; 110(13):6626-30. PubMed ID: 16570964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.
    Pan X; Chen C; Zhu K; Fan Z
    Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100% exposed {101} facets as effective light scattering layer.
    Zhou Y; Wang X; Wang H; Song Y; Fang L; Ye N; Wang L
    Dalton Trans; 2014 Mar; 43(12):4711-9. PubMed ID: 24468963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells.
    Chu L; Qin Z; Yang J; Li X
    Sci Rep; 2015 Jul; 5():12143. PubMed ID: 26190140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.