These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21780795)

  • 21. Integrated decision support for assessing chemical liabilities.
    Spjuth O; Eklund M; Ahlberg Helgee E; Boyer S; Carlsson L
    J Chem Inf Model; 2011 Aug; 51(8):1840-7. PubMed ID: 21774475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of an Aurora kinase inhibitor through site-specific dynamic combinatorial chemistry.
    Cancilla MT; He MM; Viswanathan N; Simmons RL; Taylor M; Fung AD; Cao K; Erlanson DA
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3978-81. PubMed ID: 18579375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.
    Sheridan RP; Maiorov VN; Holloway MK; Cornell WD; Gao YD
    J Chem Inf Model; 2010 Nov; 50(11):2029-40. PubMed ID: 20977231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-based maximal affinity model predicts small-molecule druggability.
    Cheng AC; Coleman RG; Smyth KT; Cao Q; Soulard P; Caffrey DR; Salzberg AC; Huang ES
    Nat Biotechnol; 2007 Jan; 25(1):71-5. PubMed ID: 17211405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Knowledge-based design of target-focused libraries using protein-ligand interaction constraints.
    Deng Z; Chuaqui C; Singh J
    J Med Chem; 2006 Jan; 49(2):490-500. PubMed ID: 16420036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SDOVS: a solvent dipole ordering-based method for virtual screening.
    Murata K; Nagata N; Nakanishi I; Kitaura K
    J Comput Chem; 2010 Nov; 31(15):2714-22. PubMed ID: 20839298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein binding site analysis for drug discovery using a computational fragment-based method.
    Ludington JL
    Methods Mol Biol; 2015; 1289():145-54. PubMed ID: 25709039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. G-protein-coupled receptor-focused drug discovery using a target class platform approach.
    Heilker R; Wolff M; Tautermann CS; Bieler M
    Drug Discov Today; 2009 Mar; 14(5-6):231-40. PubMed ID: 19121411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel strategy for three-dimensional fragment-based lead discovery.
    Yuan H; Lu T; Ran T; Liu H; Lu S; Tai W; Leng Y; Zhang W; Wang J; Chen Y
    J Chem Inf Model; 2011 Apr; 51(4):959-74. PubMed ID: 21438547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BEAR, a novel virtual screening methodology for drug discovery.
    Degliesposti G; Portioli C; Parenti MD; Rastelli G
    J Biomol Screen; 2011 Jan; 16(1):129-33. PubMed ID: 21084717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors.
    Park H; Li M; Choi J; Cho H; Ham SW
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4372-5. PubMed ID: 19500977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-based identification of small molecule binding sites using a free energy model.
    Coleman RG; Salzberg AC; Cheng AC
    J Chem Inf Model; 2006; 46(6):2631-7. PubMed ID: 17125203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graph mining: procedure, application to drug discovery and recent advances.
    Takigawa I; Mamitsuka H
    Drug Discov Today; 2013 Jan; 18(1-2):50-7. PubMed ID: 22889967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural products as leads to potential drugs: an old process or the new hope for drug discovery?
    Newman DJ
    J Med Chem; 2008 May; 51(9):2589-99. PubMed ID: 18393402
    [No Abstract]   [Full Text] [Related]  

  • 37. Protein-Directed Dynamic Combinatorial Chemistry: A Guide to Protein Ligand and Inhibitor Discovery.
    Huang R; Leung IK
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27438816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A scalable approach to combinatorial library design for drug discovery.
    Sharma P; Salapaka S; Beck C
    J Chem Inf Model; 2008 Jan; 48(1):27-41. PubMed ID: 18052333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for designing GPCR-focused libraries and screening sets.
    Jimonet P; Jäger R
    Curr Opin Drug Discov Devel; 2004 May; 7(3):325-33. PubMed ID: 15216936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A scalable approach to combinatorial library design.
    Sharma P; Salapaka S; Beck C
    Methods Mol Biol; 2011; 685():71-89. PubMed ID: 20981519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.