These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 21780825)

  • 1. Enhancement of the catalytic activity of a 27 kDa subtilisin-like enzyme from Bacillus amyloliquefaciens CH51 by in vitro mutagenesis.
    Kim J; Kim JH; Choi KH; Kim JH; Song YS; Cha J
    J Agric Food Chem; 2011 Aug; 59(16):8675-82. PubMed ID: 21780825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on Enhancement of the catalytic activity of a 27 kDa subtilisin-like enzyme from Bacillus amyloliquefaciens CH51 by in vitro mutagenesis.
    Viqar B; Gopinath A; Dimitrov JD; Kang J
    J Agric Food Chem; 2012 Apr; 60(16):4170-2. PubMed ID: 22475247
    [No Abstract]   [Full Text] [Related]  

  • 3. Directed coevolution of stability and catalytic activity in calcium-free subtilisin.
    Strausberg SL; Ruan B; Fisher KE; Alexander PA; Bryan PN
    Biochemistry; 2005 Mar; 44(9):3272-9. PubMed ID: 15736937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from cheonggukjang.
    Kim GM; Lee AR; Lee KW; Park JY; Chun J; Cha J; Song YS; Kim JH
    J Microbiol Biotechnol; 2009 Sep; 19(9):997-1004. PubMed ID: 19809258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a substrate-specific cold-adapted subtilisin.
    Tindbaek N; Svendsen A; Oestergaard PR; Draborg H
    Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant.
    Ruan B; London V; Fisher KE; Gallagher DT; Bryan PN
    Biochemistry; 2008 Jun; 47(25):6628-36. PubMed ID: 18507395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site.
    Antikainen NM; Hergenrother PJ; Harris MM; Corbett W; Martin SF
    Biochemistry; 2003 Feb; 42(6):1603-10. PubMed ID: 12578373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the autoprocessing site of subtilisin YaB-G124A.
    Chang YS; Liaw SH; Mei HC; Hsu CC; Wu CY; Tsai YC
    Biochem Biophys Res Commun; 2002 Feb; 291(1):165-9. PubMed ID: 11829478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrinolytic serine protease isolation from Bacillus amyloliquefaciens An6 grown on Mirabilis jalapa tuber powders.
    Agrebi R; Hmidet N; Hajji M; Ktari N; Haddar A; Fakhfakh-Zouari N; Nasri M
    Appl Biochem Biotechnol; 2010 Sep; 162(1):75-88. PubMed ID: 19842068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The controlled introduction of multiple negative charge at single amino acid sites in subtilisin Bacillus lentus.
    Davis BG; Shang X; DeSantis G; Bott RR; Jones JB
    Bioorg Med Chem; 1999 Nov; 7(11):2293-301. PubMed ID: 10632039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity.
    Tatsumi C; Hashida Y; Yasukawa K; Inouye K
    J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering thermostability in subtilisin BPN' by in vitro mutagenesis.
    Rollence ML; Filpula D; Pantoliano MW; Bryan PN
    Crit Rev Biotechnol; 1988; 8(3):217-24. PubMed ID: 3145814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis.
    Jaouadi B; Aghajari N; Haser R; Bejar S
    Biochimie; 2010 Apr; 92(4):360-9. PubMed ID: 20096326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1.
    Leemhuis H; Rozeboom HJ; Wilbrink M; Euverink GJ; Dijkstra BW; Dijkhuizen L
    Biochemistry; 2003 Jun; 42(24):7518-26. PubMed ID: 12809508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. His68 and His141 are critical contributors to the intersubunit catalytic site of adenylosuccinate lyase of Bacillus subtilis.
    Lee TT; Worby C; Bao ZQ; Dixon JE; Colman RF
    Biochemistry; 1999 Jan; 38(1):22-32. PubMed ID: 9890879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity.
    Bessler C; Schmitt J; Maurer KH; Schmid RD
    Protein Sci; 2003 Oct; 12(10):2141-9. PubMed ID: 14500872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.