These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 21780827)
1. Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. Wang JX; Ma C; Choi Y; Su D; Zhu Y; Liu P; Si R; Vukmirovic MB; Zhang Y; Adzic RR J Am Chem Soc; 2011 Aug; 133(34):13551-7. PubMed ID: 21780827 [TBL] [Abstract][Full Text] [Related]
2. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. Wang JX; Inada H; Wu L; Zhu Y; Choi Y; Liu P; Zhou WP; Adzic RR J Am Chem Soc; 2009 Dec; 131(47):17298-302. PubMed ID: 19899768 [TBL] [Abstract][Full Text] [Related]
3. Strained lattice with persistent atomic order in Pt3Fe2 intermetallic core-shell nanocatalysts. Prabhudev S; Bugnet M; Bock C; Botton GA ACS Nano; 2013 Jul; 7(7):6103-10. PubMed ID: 23773037 [TBL] [Abstract][Full Text] [Related]
4. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Jin Fan H; Knez M; Scholz R; Nielsch K; Pippel E; Hesse D; Zacharias M; Gösele U Nat Mater; 2006 Aug; 5(8):627-31. PubMed ID: 16845423 [TBL] [Abstract][Full Text] [Related]
5. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect. Zhou W; Zou R; Yang X; Huang N; Huang J; Liang H; Wang J Nanoscale; 2015 Aug; 7(32):13715-22. PubMed ID: 26220051 [TBL] [Abstract][Full Text] [Related]
6. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Yin Y; Rioux RM; Erdonmez CK; Hughes S; Somorjai GA; Alivisatos AP Science; 2004 Apr; 304(5671):711-4. PubMed ID: 15118156 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178 [TBL] [Abstract][Full Text] [Related]
8. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. Gong K; Su D; Adzic RR J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798 [TBL] [Abstract][Full Text] [Related]
9. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction. Li X; Liu J; He W; Huang Q; Yang H J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983 [TBL] [Abstract][Full Text] [Related]
10. A Review on Recent Developments and Prospects for the Oxygen Reduction Reaction on Hollow Pt-alloy Nanoparticles. Asset T; Chattot R; Fontana M; Mercier-Guyon B; Job N; Dubau L; Maillard F Chemphyschem; 2018 Jul; 19(13):1552-1567. PubMed ID: 29578267 [TBL] [Abstract][Full Text] [Related]
11. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related]
12. A bis(p-sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres. Yang J; Lee JY; Too HP; Valiyaveettil S J Phys Chem B; 2006 Jan; 110(1):125-9. PubMed ID: 16471509 [TBL] [Abstract][Full Text] [Related]
14. Core-shell and hollow nanocrystal formation via small molecule surface photodissociation; Ag@Ag2Se as an example. Tan H; Li S; Fan WY J Phys Chem B; 2006 Aug; 110(32):15812-6. PubMed ID: 16898730 [TBL] [Abstract][Full Text] [Related]
15. Oxygen Plasma Induced Nanochannels for Creating Bimetallic Hollow Nanocrystals. Wu WY; Wu S; Tjiu WW; Tan HR; Leong FY; Lim PC; Wang S; Jiang W; Ji R; Zhu Q; Bosman M; Yan Q; Aabdin Z ACS Nano; 2023 Sep; 17(17):17536-17544. PubMed ID: 37611075 [TBL] [Abstract][Full Text] [Related]
16. Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol. Lee SW; Chen S; Sheng W; Yabuuchi N; Kim YT; Mitani T; Vescovo E; Shao-Horn Y J Am Chem Soc; 2009 Nov; 131(43):15669-77. PubMed ID: 19824642 [TBL] [Abstract][Full Text] [Related]
17. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Hsieh YC; Zhang Y; Su D; Volkov V; Si R; Wu L; Zhu Y; An W; Liu P; He P; Ye S; Adzic RR; Wang JX Nat Commun; 2013; 4():2466. PubMed ID: 24045405 [TBL] [Abstract][Full Text] [Related]
18. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation. Liu B; Chen JH; Zhong XX; Cui KZ; Zhou HH; Kuang YF J Colloid Interface Sci; 2007 Mar; 307(1):139-44. PubMed ID: 17187816 [TBL] [Abstract][Full Text] [Related]
19. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles. Railsback JG; Johnston-Peck AC; Wang J; Tracy JB ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781 [TBL] [Abstract][Full Text] [Related]
20. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Fan HJ; Gösele U; Zacharias M Small; 2007 Oct; 3(10):1660-71. PubMed ID: 17890644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]