These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21781024)

  • 41. Synthetic Random Copolymers as a Molecular Platform To Mimic Host-Defense Antimicrobial Peptides.
    Takahashi H; Caputo GA; Vemparala S; Kuroda K
    Bioconjug Chem; 2017 May; 28(5):1340-1350. PubMed ID: 28379682
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plant Natural Products Targeting Bacterial Virulence Factors.
    Silva LN; Zimmer KR; Macedo AJ; Trentin DS
    Chem Rev; 2016 Aug; 116(16):9162-236. PubMed ID: 27437994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria.
    Moravej H; Moravej Z; Yazdanparast M; Heiat M; Mirhosseini A; Moosazadeh Moghaddam M; Mirnejad R
    Microb Drug Resist; 2018; 24(6):747-767. PubMed ID: 29957118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides.
    Panteleev PV; Balandin SV; Ivanov VT; Ovchinnikova TV
    Curr Med Chem; 2017; 24(17):1724-1746. PubMed ID: 28440185
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and biological activity of beta-hairpin-like antimicrobial peptide.
    Dong N; Ma Q; Shan A; Cao Y
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):243-50. PubMed ID: 22667126
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plakofuranolactone as a Quorum Quenching Agent from the Indonesian Sponge Plakortis cf. lita.
    Costantino V; Della Sala G; Saurav K; Teta R; Bar-Shalom R; Mangoni A; Steindler L
    Mar Drugs; 2017 Feb; 15(3):. PubMed ID: 28264490
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review.
    Booysen E; Dicks LMT
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1310-1320. PubMed ID: 32844362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antimicrobial β-peptides and α-peptoids.
    Godballe T; Nilsson LL; Petersen PD; Jenssen H
    Chem Biol Drug Des; 2011 Feb; 77(2):107-16. PubMed ID: 21266014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antimicrobial peptide capsids of de novo design.
    De Santis E; Alkassem H; Lamarre B; Faruqui N; Bella A; Noble JE; Micale N; Ray S; Burns JR; Yon AR; Hoogenboom BW; Ryadnov MG
    Nat Commun; 2017 Dec; 8(1):2263. PubMed ID: 29273729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of an antimicrobial peptide AN5-1 in Escherichia coli and its dual mechanisms against bacteria.
    Yi T; Huang Y; Chen Y
    Chem Biol Drug Des; 2015 May; 85(5):598-607. PubMed ID: 25311453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity.
    Wang Y; Chen J; Zheng X; Yang X; Ma P; Cai Y; Zhang B; Chen Y
    J Pept Sci; 2014 Dec; 20(12):945-51. PubMed ID: 25316570
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal selection of molecular descriptors for antimicrobial peptides classification: an evolutionary feature weighting approach.
    Beltran JA; Aguilera-Mendoza L; Brizuela CA
    BMC Genomics; 2018 Sep; 19(Suppl 7):672. PubMed ID: 30255784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Animal Venom Peptides: Potential for New Antimicrobial Agents.
    Primon-Barros M; José Macedo A
    Curr Top Med Chem; 2017; 17(10):1119-1156. PubMed ID: 27697042
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antimicrobial and anti-inflammatory activities of designed antimicrobial peptide P18 analogues.
    Nan YH; Shin SY
    Protein Pept Lett; 2008; 15(8):861-5. PubMed ID: 18855761
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of a novel antimicrobial peptide from amphioxus Branchiostoma japonicum by in silico and functional analyses.
    Liu H; Lei M; Du X; Cui P; Zhang S
    Sci Rep; 2015 Dec; 5():18355. PubMed ID: 26680226
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens.
    Scoffone VC; Trespidi G; Chiarelli LR; Barbieri G; Buroni S
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential of novel antimicrobial peptide P3 from bovine erythrocytes and its analogs to disrupt bacterial membranes in vitro and display activity against drug-resistant bacteria in a mouse model.
    Zhang Q; Xu Y; Wang Q; Hang B; Sun Y; Wei X; Hu J
    Antimicrob Agents Chemother; 2015 May; 59(5):2835-41. PubMed ID: 25753638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short Antimicrobial Peptides.
    Sharma K; Aaghaz S; Shenmar K; Jain R
    Recent Pat Antiinfect Drug Discov; 2018; 13(1):12-52. PubMed ID: 29952266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two novel antimicrobial peptides purified from the symbiotic bacteria Xenorhabdus budapestensis NMC-10.
    Xiao Y; Meng F; Qiu D; Yang X
    Peptides; 2012 Jun; 35(2):253-60. PubMed ID: 22497806
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stability, toxicity, and biological activity of host defense peptide BMAP28 and its inversed and retro-inversed isomers.
    Kindrachuk J; Scruten E; Attah-Poku S; Bell K; Potter A; Babiuk LA; Griebel PJ; Napper S
    Biopolymers; 2011; 96(1):14-24. PubMed ID: 20336731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.