These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 21781343)
1. Electron transport in acetate-grown Methanosarcina acetivorans. Wang M; Tomb JF; Ferry JG BMC Microbiol; 2011 Jul; 11():165. PubMed ID: 21781343 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a CO: heterodisulfide oxidoreductase system from acetate-grown Methanosarcina thermophila. Peer CW; Painter MH; Rasche ME; Ferry JG J Bacteriol; 1994 Nov; 176(22):6974-9. PubMed ID: 7961460 [TBL] [Abstract][Full Text] [Related]
3. A Membrane-Bound Cytochrome Enables Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR mBio; 2019 Aug; 10(4):. PubMed ID: 31431545 [TBL] [Abstract][Full Text] [Related]
4. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea. Yan Z; Wang M; Ferry JG mBio; 2017 Feb; 8(1):. PubMed ID: 28174314 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the intramolecular electron transfer pathway from 2-hydroxyphenazine to the heterodisulfide reductase from Methanosarcina thermophila. Murakami E; Deppenmeier U; Ragsdale SW J Biol Chem; 2001 Jan; 276(4):2432-9. PubMed ID: 11034998 [TBL] [Abstract][Full Text] [Related]
6. Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. Schlegel K; Welte C; Deppenmeier U; Müller V FEBS J; 2012 Dec; 279(24):4444-52. PubMed ID: 23066798 [TBL] [Abstract][Full Text] [Related]
7. The dual role of a multi-heme cytochrome in methanogenesis: MmcA is important for energy conservation and carbon metabolism in Methanosarcina acetivorans. Downing BE; Gupta D; Nayak DD Mol Microbiol; 2023 Mar; 119(3):350-363. PubMed ID: 36660820 [TBL] [Abstract][Full Text] [Related]
8. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. Li Q; Li L; Rejtar T; Lessner DJ; Karger BL; Ferry JG J Bacteriol; 2006 Jan; 188(2):702-10. PubMed ID: 16385060 [TBL] [Abstract][Full Text] [Related]
9. Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase. Buan NR; Metcalf WW Mol Microbiol; 2010 Feb; 75(4):843-53. PubMed ID: 19968794 [TBL] [Abstract][Full Text] [Related]
10. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A. Rohlin L; Gunsalus RP BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms for Electron Uptake by Methanosarcina acetivorans during Direct Interspecies Electron Transfer. Holmes DE; Zhou J; Ueki T; Woodard T; Lovley DR mBio; 2021 Oct; 12(5):e0234421. PubMed ID: 34607451 [TBL] [Abstract][Full Text] [Related]
12. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea. Duszenko N; Buan NR Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710268 [TBL] [Abstract][Full Text] [Related]
13. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. Terlesky KC; Ferry JG J Biol Chem; 1988 Mar; 263(9):4075-9. PubMed ID: 3279028 [TBL] [Abstract][Full Text] [Related]
14. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Kaster AK; Moll J; Parey K; Thauer RK Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2981-6. PubMed ID: 21262829 [TBL] [Abstract][Full Text] [Related]
15. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Welte C; Deppenmeier U Biochim Biophys Acta; 2014 Jul; 1837(7):1130-47. PubMed ID: 24333786 [TBL] [Abstract][Full Text] [Related]
16. Function of Ech hydrogenase in ferredoxin-dependent, membrane-bound electron transport in Methanosarcina mazei. Welte C; Kallnik V; Grapp M; Bender G; Ragsdale S; Deppenmeier U J Bacteriol; 2010 Feb; 192(3):674-8. PubMed ID: 19948802 [TBL] [Abstract][Full Text] [Related]
17. Lactate oxidation is linked to energy conservation and to oxygen detoxification via a putative terminal cytochrome oxidase in Methanosarcina acetivorans. Feregrino-Mondragón RD; Santiago-Martínez MG; Silva-Flores M; Encalada R; Reyes-Prieto A; Rodríguez-Zavala JS; Peña-Ocaña BA; Moreno-Sánchez R; Saavedra E; Jasso-Chávez R Arch Biochem Biophys; 2023 Jul; 743():109667. PubMed ID: 37327962 [TBL] [Abstract][Full Text] [Related]
18. Structure and function of an unusual flavodoxin from the domain Prakash D; Iyer PR; Suharti S; Walters KA; Santiago-Martinez MG; Golbeck JH; Murakami KS; Ferry JG Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25917-25922. PubMed ID: 31801875 [TBL] [Abstract][Full Text] [Related]
19. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans. Schöne C; Poehlein A; Rother M Appl Environ Microbiol; 2023 Jul; 89(7):e0216122. PubMed ID: 37347168 [TBL] [Abstract][Full Text] [Related]
20. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina. Lieber DJ; Catlett J; Madayiputhiya N; Nandakumar R; Lopez MM; Metcalf WW; Buan NR PLoS One; 2014; 9(9):e107563. PubMed ID: 25232733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]