BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21781948)

  • 1. Deciphering transcriptional control mechanisms in hematopoiesis:the impact of high-throughput sequencing technologies.
    Wilson NK; Tijssen MR; Göttgens B
    Exp Hematol; 2011 Oct; 39(10):961-8. PubMed ID: 21781948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stem cell factor SALL4 is an essential transcriptional regulator in mixed lineage leukemia-rearranged leukemogenesis.
    Yang L; Liu L; Gao H; Pinnamaneni JP; Sanagasetti D; Singh VP; Wang K; Mathison M; Zhang Q; Chen F; Mo Q; Rosengart T; Yang J
    J Hematol Oncol; 2017 Oct; 10(1):159. PubMed ID: 28974232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene set control analysis predicts hematopoietic control mechanisms from genome-wide transcription factor binding data.
    Joshi A; Hannah R; Diamanti E; Göttgens B
    Exp Hematol; 2013 Apr; 41(4):354-66.e14. PubMed ID: 23220237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells.
    Mukherjee S; Hsieh J
    Methods Mol Biol; 2018; 1686():265-286. PubMed ID: 29030827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating histone modification patterns with gene expression data during hematopoiesis.
    Hu G; Zhao K
    Methods Mol Biol; 2014; 1150():175-87. PubMed ID: 24743998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChIP-seq for the Identification of Functional Elements in the Human Genome.
    Marinov GK
    Methods Mol Biol; 2017; 1543():3-18. PubMed ID: 28349419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide profiling of transcription factor binding and epigenetic marks in adipocytes by ChIP-seq.
    Nielsen R; Mandrup S
    Methods Enzymol; 2014; 537():261-79. PubMed ID: 24480351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multiplexed System for Quantitative Comparisons of Chromatin Landscapes.
    van Galen P; Viny AD; Ram O; Ryan RJ; Cotton MJ; Donohue L; Sievers C; Drier Y; Liau BB; Gillespie SM; Carroll KM; Cross MB; Levine RL; Bernstein BE
    Mol Cell; 2016 Jan; 61(1):170-80. PubMed ID: 26687680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications.
    Pillai S; Chellappan SP
    Methods Mol Biol; 2015; 1288():447-72. PubMed ID: 25827896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation.
    Nagase R; Inoue D; Pastore A; Fujino T; Hou HA; Yamasaki N; Goyama S; Saika M; Kanai A; Sera Y; Horikawa S; Ota Y; Asada S; Hayashi Y; Kawabata KC; Takeda R; Tien HF; Honda H; Abdel-Wahab O; Kitamura T
    J Exp Med; 2018 Jun; 215(6):1729-1747. PubMed ID: 29643185
    [No Abstract]   [Full Text] [Related]  

  • 13. Epigenetic dysregulation of hematopoietic stem cells and preleukemic state.
    Kunimoto H; Nakajima H
    Int J Hematol; 2017 Jul; 106(1):34-44. PubMed ID: 28555413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using ChIP-seq technology to generate high-resolution profiles of histone modifications.
    O'Geen H; Echipare L; Farnham PJ
    Methods Mol Biol; 2011; 791():265-86. PubMed ID: 21913086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood stem/progenitor cell model.
    Wilson NK; Schoenfelder S; Hannah R; Sánchez Castillo M; Schütte J; Ladopoulos V; Mitchelmore J; Goode DK; Calero-Nieto FJ; Moignard V; Wilkinson AC; Jimenez-Madrid I; Kinston S; Spivakov M; Fraser P; Göttgens B
    Blood; 2016 Mar; 127(13):e12-23. PubMed ID: 26809507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis.
    Wu W; Morrissey CS; Keller CA; Mishra T; Pimkin M; Blobel GA; Weiss MJ; Hardison RC
    Genome Res; 2014 Dec; 24(12):1945-62. PubMed ID: 25319994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators.
    Piechota M; Korostynski M; Ficek J; Tomski A; Przewlocki R
    BMC Bioinformatics; 2016 Feb; 17():85. PubMed ID: 26868127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CODEX: a next-generation sequencing experiment database for the haematopoietic and embryonic stem cell communities.
    Sánchez-Castillo M; Ruau D; Wilkinson AC; Ng FS; Hannah R; Diamanti E; Lombard P; Wilson NK; Gottgens B
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D1117-23. PubMed ID: 25270877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells.
    Liu T
    Methods Mol Biol; 2014; 1150():81-95. PubMed ID: 24743991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Candidate Functional Elements in the Genome from ChIP-seq Data.
    Marinov GK
    Methods Mol Biol; 2017; 1543():19-43. PubMed ID: 28349420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.