These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 21782179)
1. Initial stress in biomechanical models of atherosclerotic plaques. Speelman L; Akyildiz AC; den Adel B; Wentzel JJ; van der Steen AF; Virmani R; van der Weerd L; Jukema JW; Poelmann RE; van Brummelen EH; Gijsen FJ J Biomech; 2011 Sep; 44(13):2376-82. PubMed ID: 21782179 [TBL] [Abstract][Full Text] [Related]
2. The influence of axial image resolution on atherosclerotic plaque stress computations. Nieuwstadt HA; Akyildiz AC; Speelman L; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ J Biomech; 2013 Feb; 46(4):689-95. PubMed ID: 23261242 [TBL] [Abstract][Full Text] [Related]
3. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279 [TBL] [Abstract][Full Text] [Related]
4. Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models. Dolla WJ; House JA; Marso SP Med Eng Phys; 2012 Nov; 34(9):1330-8. PubMed ID: 22342558 [TBL] [Abstract][Full Text] [Related]
5. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Cilla M; Peña E; Martínez MA Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796 [TBL] [Abstract][Full Text] [Related]
6. Morphological and biomechanical aspects of vulnerable coronary plaque. Finet G; Ohayon J; Rioufol G; Lefloch S; Tracqui P; Dubreuil O; Tabib A Arch Mal Coeur Vaiss; 2007; 100(6-7):547-53. PubMed ID: 17893637 [TBL] [Abstract][Full Text] [Related]
7. Study of carotid arterial plaque stress for symptomatic and asymptomatic patients. Gao H; Long Q; Kumar Das S; Halls J; Graves M; Gillard JH; Li ZY J Biomech; 2011 Sep; 44(14):2551-7. PubMed ID: 21824619 [TBL] [Abstract][Full Text] [Related]
8. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. Li ZY; Howarth S; Trivedi RA; U-King-Im JM; Graves MJ; Brown A; Wang L; Gillard JH J Biomech; 2006; 39(14):2611-22. PubMed ID: 16256124 [TBL] [Abstract][Full Text] [Related]
9. Peak cap stress calculations in coronary atherosclerotic plaques with an incomplete necrotic core geometry. Kok AM; Speelman L; Virmani R; van der Steen AF; Gijsen FJ; Wentzel JJ Biomed Eng Online; 2016 May; 15(1):48. PubMed ID: 27145748 [TBL] [Abstract][Full Text] [Related]
10. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. Gao H; Long Q J Biomech; 2008 Oct; 41(14):3053-9. PubMed ID: 18786671 [TBL] [Abstract][Full Text] [Related]
11. The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion. Nguyen CM; Levy AJ J Biomech; 2010 Oct; 43(14):2702-8. PubMed ID: 20723900 [TBL] [Abstract][Full Text] [Related]
13. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. Kock SA; Nygaard JV; Eldrup N; Fründ ET; Klaerke A; Paaske WP; Falk E; Yong Kim W J Biomech; 2008; 41(8):1651-8. PubMed ID: 18485351 [TBL] [Abstract][Full Text] [Related]
14. Effects of intima stiffness and plaque morphology on peak cap stress. Akyildiz AC; Speelman L; van Brummelen H; Gutiérrez MA; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Biomed Eng Online; 2011 Apr; 10():25. PubMed ID: 21477277 [TBL] [Abstract][Full Text] [Related]
15. Effect of residual stress on peak cap stress in arteries. Vandiver R Math Biosci Eng; 2014 Oct; 11(5):1199-214. PubMed ID: 25347810 [TBL] [Abstract][Full Text] [Related]
16. Coronary plaque composition influences biomechanical stress and predicts plaque rupture in a morpho-mechanic OCT analysis. Milzi A; Lemma ED; Dettori R; Burgmaier K; Marx N; Reith S; Burgmaier M Elife; 2021 May; 10():. PubMed ID: 33972016 [TBL] [Abstract][Full Text] [Related]
17. Does microcalcification increase the risk of rupture? Cilla M; Monterde D; Peña E; Martínez MÁ Proc Inst Mech Eng H; 2013 May; 227(5):588-99. PubMed ID: 23637269 [TBL] [Abstract][Full Text] [Related]
18. Elucidating atherosclerotic vulnerable plaque rupture by modeling cross substitution of ApoE-/- mouse and human plaque components stiffnesses. Ohayon J; Mesnier N; Broisat A; Toczek J; Riou L; Tracqui P Biomech Model Mechanobiol; 2012 Jul; 11(6):801-13. PubMed ID: 21986797 [TBL] [Abstract][Full Text] [Related]
19. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP J Biomech; 2013 Jun; 46(10):1759-66. PubMed ID: 23664315 [TBL] [Abstract][Full Text] [Related]
20. Moderate thickness of lipid core in shoulder region of atherosclerotic plaque determines vulnerable plaque A parametric study. Polzer S; Polišenská A; Novák K; Burša J Med Eng Phys; 2019 Jul; 69():140-146. PubMed ID: 31160196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]