These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 21782272)
1. Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation. Aerts HJ; Bussink J; Oyen WJ; van Elmpt W; Folgering AM; Emans D; Velders M; Lambin P; De Ruysscher D Lung Cancer; 2012 Jan; 75(1):73-6. PubMed ID: 21782272 [TBL] [Abstract][Full Text] [Related]
2. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT scan. Aerts HJ; van Baardwijk AA; Petit SF; Offermann C; Loon Jv; Houben R; Dingemans AM; Wanders R; Boersma L; Borger J; Bootsma G; Geraedts W; Pitz C; Simons J; Wouters BG; Oellers M; Lambin P; Bosmans G; Dekker AL; De Ruysscher D Radiother Oncol; 2009 Jun; 91(3):386-92. PubMed ID: 19329207 [TBL] [Abstract][Full Text] [Related]
3. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Edet-Sanson A; Dubray B; Doyeux K; Back A; Hapdey S; Modzelewski R; Bohn P; Gardin I; Vera P Radiother Oncol; 2012 Feb; 102(2):251-7. PubMed ID: 21885145 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Hypermetabolic and Hypoxic Volumes Delineated on [ Thureau S; Modzelewski R; Bohn P; Hapdey S; Gouel P; Dubray B; Vera P Mol Imaging Biol; 2020 Jun; 22(3):764-771. PubMed ID: 31432388 [TBL] [Abstract][Full Text] [Related]
5. Challenges in using ¹⁸F-fluorodeoxyglucose-PET-CT to define a biological radiotherapy boost volume in locally advanced pancreatic cancer. Wilson JM; Mukherjee S; Chu KY; Brunner TB; Partridge M; Hawkins M Radiat Oncol; 2014 Jun; 9():146. PubMed ID: 24962658 [TBL] [Abstract][Full Text] [Related]
6. Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Feng M; Kong FM; Gross M; Fernando S; Hayman JA; Ten Haken RK Int J Radiat Oncol Biol Phys; 2009 Mar; 73(4):1228-34. PubMed ID: 19251094 [TBL] [Abstract][Full Text] [Related]
7. Correlation of (18)F-FDG avid volumes on pre-radiation therapy and post-radiation therapy FDG PET scans in recurrent lung cancer. Shusharina N; Cho J; Sharp GC; Choi NC Int J Radiat Oncol Biol Phys; 2014 May; 89(1):137-44. PubMed ID: 24725696 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous positron emission tomography (PET) assessment of metabolism with ¹⁸F-fluoro-2-deoxy-d-glucose (FDG), proliferation with ¹⁸F-fluoro-thymidine (FLT), and hypoxia with ¹⁸fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Vera P; Bohn P; Edet-Sanson A; Salles A; Hapdey S; Gardin I; Ménard JF; Modzelewski R; Thiberville L; Dubray B Radiother Oncol; 2011 Jan; 98(1):109-16. PubMed ID: 21056487 [TBL] [Abstract][Full Text] [Related]
9. Areas of high 18F-FDG uptake on preradiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for non-small cell lung cancer. Calais J; Thureau S; Dubray B; Modzelewski R; Thiberville L; Gardin I; Vera P J Nucl Med; 2015 Feb; 56(2):196-203. PubMed ID: 25572091 [TBL] [Abstract][Full Text] [Related]
10. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Aerts HJ; Bosmans G; van Baardwijk AA; Dekker AL; Oellers MC; Lambin P; De Ruysscher D Int J Radiat Oncol Biol Phys; 2008 Aug; 71(5):1402-7. PubMed ID: 18234432 [TBL] [Abstract][Full Text] [Related]
11. Evaluating FDG uptake changes between pre and post therapy respiratory gated PET scans. Aristophanous M; Yong Y; Yap JT; Killoran JH; Allen AM; Berbeco RI; Chen AB Radiother Oncol; 2012 Mar; 102(3):377-82. PubMed ID: 22265731 [TBL] [Abstract][Full Text] [Related]
12. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT. Hanna GG; McAleese J; Carson KJ; Stewart DP; Cosgrove VP; Eakin RL; Zatari A; Lynch T; Jarritt PH; Young VA; O'Sullivan JM; Hounsell AR Int J Radiat Oncol Biol Phys; 2010 May; 77(1):24-30. PubMed ID: 19665324 [TBL] [Abstract][Full Text] [Related]
13. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer? Abramyuk A; Tokalov S; Zöphel K; Koch A; Szluha Lazanyi K; Gillham C; Herrmann T; Abolmaali N Radiother Oncol; 2009 Jun; 91(3):399-404. PubMed ID: 19168248 [TBL] [Abstract][Full Text] [Related]
14. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging. Dong X; Wu P; Sun X; Li W; Wan H; Yu J; Xing L J Med Imaging Radiat Oncol; 2015 Jun; 59(3):338-45. PubMed ID: 25708154 [TBL] [Abstract][Full Text] [Related]
15. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Ashamalla H; Rafla S; Parikh K; Mokhtar B; Goswami G; Kambam S; Abdel-Dayem H; Guirguis A; Ross P; Evola A Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1016-23. PubMed ID: 15979817 [TBL] [Abstract][Full Text] [Related]
16. Prediction of residual metabolic activity after treatment in NSCLC patients. Velazquez ER; Aerts HJ; Oberije C; De Ruysscher D; Lambin P Acta Oncol; 2010 Oct; 49(7):1033-9. PubMed ID: 20831492 [TBL] [Abstract][Full Text] [Related]
17. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Hong R; Halama J; Bova D; Sethi A; Emami B Int J Radiat Oncol Biol Phys; 2007 Mar; 67(3):720-6. PubMed ID: 17293230 [TBL] [Abstract][Full Text] [Related]
18. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Deniaud-Alexandre E; Touboul E; Lerouge D; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Keraudy K; Kerrou K; Montravers F; Milleron B; Lebeau B; Talbot JN Int J Radiat Oncol Biol Phys; 2005 Dec; 63(5):1432-41. PubMed ID: 16125870 [TBL] [Abstract][Full Text] [Related]
19. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Gondi V; Bradley K; Mehta M; Howard A; Khuntia D; Ritter M; Tomé W Int J Radiat Oncol Biol Phys; 2007 Jan; 67(1):187-95. PubMed ID: 17189070 [TBL] [Abstract][Full Text] [Related]
20. [¹⁸F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Petit SF; van Elmpt WJ; Oberije CJ; Vegt E; Dingemans AM; Lambin P; Dekker AL; De Ruysscher D Int J Radiat Oncol Biol Phys; 2011 Nov; 81(3):698-705. PubMed ID: 20884128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]