These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 21782330)
21. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite. Voegelin A; Jacquat O; Pfister S; Barmettler K; Scheinost AC; Kretzschmar R Environ Sci Technol; 2011 Jan; 45(1):255-61. PubMed ID: 21142002 [TBL] [Abstract][Full Text] [Related]
22. Effects of decapitated and root-pruned Sedum alfredii on the characterization of dissolved organic matter and enzymatic activity in rhizosphere soil during Cd phytoremediation. Niu H; Wu H; Chen K; Sun J; Cao M; Luo J J Hazard Mater; 2021 Sep; 417():125977. PubMed ID: 33992011 [TBL] [Abstract][Full Text] [Related]
23. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Zhang J; Zhang M; Shohag MJ; Tian S; Song H; Feng Y; Yang X Planta; 2016 Mar; 243(3):577-89. PubMed ID: 26547194 [TBL] [Abstract][Full Text] [Related]
24. Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. Zhou LX; Wong JW J Environ Qual; 2001; 30(3):878-83. PubMed ID: 11401276 [TBL] [Abstract][Full Text] [Related]
25. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. Li T; Yang X; Lu L; Islam E; He Z J Hazard Mater; 2009 Sep; 169(1-3):734-41. PubMed ID: 19427116 [TBL] [Abstract][Full Text] [Related]
26. Sorption of 3,4-dichloroaniline on four contrasting Greek agricultural soils and the effect of liming. Droulia FE; Kati V; Giannopolitis CN J Environ Sci Health B; 2011; 46(5):404-10. PubMed ID: 21614714 [TBL] [Abstract][Full Text] [Related]
27. Phosphorus and nitrogen sorption to soils in the presence of poultry litter-derived dissolved organic matter. Goyne KW; Jun HJ; Anderson SH; Motavalli PP J Environ Qual; 2008; 37(1):154-63. PubMed ID: 18178888 [TBL] [Abstract][Full Text] [Related]
28. Response of antioxidant enzymes, ascorbate and glutathione metabolism towards cadmium in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii H. Jin X; Yang X; Mahmood Q; Islam E; Liu D; Li H Environ Toxicol; 2008 Aug; 23(4):517-29. PubMed ID: 18214940 [TBL] [Abstract][Full Text] [Related]
29. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. Deng DM; Deng JC; Li JT; Zhang J; Hu M; Lin Z; Liao B J Integr Plant Biol; 2008 Jun; 50(6):691-8. PubMed ID: 18713409 [TBL] [Abstract][Full Text] [Related]
30. Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Liang J; Shohag MJ; Yang X; Tian S; Zhang Y; Feng Y; He Z Ecotoxicol Environ Saf; 2014 Feb; 100():159-65. PubMed ID: 24239266 [TBL] [Abstract][Full Text] [Related]
31. Interactions of carbamazepine in soil: effects of dissolved organic matter. Navon R; Hernandez-Ruiz S; Chorover J; Chefetz B J Environ Qual; 2011; 40(3):942-8. PubMed ID: 21546680 [TBL] [Abstract][Full Text] [Related]
32. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. Li WC; Ye ZH; Wong MH J Exp Bot; 2007; 58(15-16):4173-82. PubMed ID: 18039737 [TBL] [Abstract][Full Text] [Related]
33. Root responses and metal accumulation in two contrasting ecotypes of Sedum alfredii Hance under lead and zinc toxic stress. Li TQ; Yang XE; Jin XF; He ZL; Stoffella PJ; Hu QH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(5):1081-96. PubMed ID: 15887576 [TBL] [Abstract][Full Text] [Related]
34. [Effects of Different Kinds of Organic Materials on Soil Heavy Metal Phytoremediation Efficiency by Sedum alfredii Hance]. Yao GH; Xu HZ; Zhu LG; Ma JW; Liu D; Ye ZQ Huan Jing Ke Xue; 2015 Nov; 36(11):4268-76. PubMed ID: 26911018 [TBL] [Abstract][Full Text] [Related]
35. Sorption of dissolved organic matter and its effects on the atrazine sorption on soils. Ling WT; Wang HZ; Xu JM; Gao YZ J Environ Sci (China); 2005; 17(3):478-82. PubMed ID: 16083129 [TBL] [Abstract][Full Text] [Related]
36. Sorption of phenanthrene by soils contaminated with heavy metals. Gao Y; Xiong W; Ling W; Xu J Chemosphere; 2006 Nov; 65(8):1355-61. PubMed ID: 16735048 [TBL] [Abstract][Full Text] [Related]
37. Changes in Metal Availability and Improvements in Microbial Properties After Phytoextraction of a Cd, Zn and Pb Contaminated Soil. Yang W; Li P; Rensing C; Nie S Bull Environ Contam Toxicol; 2018 Nov; 101(5):624-630. PubMed ID: 30370447 [TBL] [Abstract][Full Text] [Related]
38. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Appel C; Ma L J Environ Qual; 2002; 31(2):581-9. PubMed ID: 11931450 [TBL] [Abstract][Full Text] [Related]
39. Effects of CO Tang L; Hamid Y; Gurajala HK; He Z; Yang X Environ Sci Pollut Res Int; 2019 Jan; 26(2):1809-1820. PubMed ID: 30456615 [TBL] [Abstract][Full Text] [Related]
40. Rhizosphere concentrations of zinc and cadmium in a metal contaminated soil after repeated phytoextraction by Sedum plumbizincicola. Liu L; Wu L; Li N; Luo Y; Li S; Li Z; Han C; Jiang Y; Christie P Int J Phytoremediation; 2011 Sep; 13(8):750-64. PubMed ID: 21972516 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]