BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21782399)

  • 1. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology.
    Spoerk J; Gendrin C; Weber C; Figl M; Pawiro SA; Furtado H; Fabri D; Bloch C; Bergmann H; Gröller E; Birkfellner W
    Z Med Phys; 2012 Feb; 22(1):13-20. PubMed ID: 21782399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast DRR splat rendering using common consumer graphics hardware.
    Spoerk J; Bergmann H; Wanschitz F; Dong S; Birkfellner W
    Med Phys; 2007 Nov; 34(11):4302-8. PubMed ID: 18072495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast DRR generation for 2D to 3D registration on GPUs.
    Tornai GJ; Cserey G; Pappas I
    Med Phys; 2012 Aug; 39(8):4795-9. PubMed ID: 22894404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wobbled splatting--a fast perspective volume rendering method for simulation of x-ray images from CT.
    Birkfellner W; Seemann R; Figl M; Hummel J; Ede C; Homolka P; Yang X; Niederer P; Bergmann H
    Phys Med Biol; 2005 May; 50(9):N73-84. PubMed ID: 15843725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
    Yan H; Dai JR
    J Appl Clin Med Phys; 2016 Mar; 17(2):174-193. PubMed ID: 27074482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast DRR generation for 2D/3D registration.
    Birkfellner W; Seemann R; Figl M; Hummel J; Ede C; Homolka P; Yang X; Niederer P; Bergmann H
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):960-7. PubMed ID: 16686053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.
    Gendrin C; Furtado H; Weber C; Bloch C; Figl M; Pawiro SA; Bergmann H; Stock M; Fichtinger G; Georg D; Birkfellner W
    Radiother Oncol; 2012 Feb; 102(2):274-80. PubMed ID: 21885144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel generation of digitally reconstructed radiographs on heterogeneous multi-GPU workstations.
    Abdellah M; Abdelaziz A; Eslam Ali EM; Abdelaziz S; Sayed A; Owis MI; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3953-3956. PubMed ID: 28269150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative evaluation of a cone-beam computed tomography-planning computed tomography deformable image registration method for adaptive radiation therapy.
    Lawson JD; Schreibmann E; Jani AB; Fox T
    J Appl Clin Med Phys; 2007 Nov; 8(4):96-113. PubMed ID: 18449149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient rendering of digitally reconstructed radiographs on heterogeneous computing architectures using central slice theorem.
    Abdellah M; Abdallah M; Alzanati M; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3957-3960. PubMed ID: 28269151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.
    Jia X; Lou Y; Li R; Song WY; Jiang SB
    Med Phys; 2010 Apr; 37(4):1757-60. PubMed ID: 20443497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.
    Dorgham OM; Laycock SD; Fisher MH
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2594-603. PubMed ID: 22801484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.
    Ahmad M; Balter P; Pan T
    Med Phys; 2011 Oct; 38(10):5646-56. PubMed ID: 21992381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy.
    Brehm M; Paysan P; Oelhafen M; Kunz P; Kachelrieß M
    Med Phys; 2012 Dec; 39(12):7603-18. PubMed ID: 23231308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
    Park JC; Park SH; Kim JS; Han Y; Cho MK; Kim HK; Liu Z; Jiang SB; Song B; Song WY
    Technol Cancer Res Treat; 2011 Aug; 10(4):295-306. PubMed ID: 21728386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: cone/ring artifact correction and multiple GPU implementation.
    Yan H; Wang X; Shi F; Bai T; Folkerts M; Cervino L; Jiang SB; Jia X
    Med Phys; 2014 Nov; 41(11):111912. PubMed ID: 25370645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of image guided motion management methods in lung cancer radiotherapy.
    Zhuang L; Yan D; Liang J; Ionascu D; Mangona V; Yang K; Zhou J
    Med Phys; 2014 Mar; 41(3):031911. PubMed ID: 24593729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy.
    Yu G; Liang Y; Yang G; Shu H; Li B; Yin Y; Li D
    Phys Med Biol; 2015 Apr; 60(7):2765-83. PubMed ID: 25767898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of the performance of different deformable image registration algorithms in helical, axial, and cone-beam CT images using a mobile phantom.
    Ali I; Alsbou N; Jaskowiak J; Ahmad S
    J Appl Clin Med Phys; 2018 Mar; 19(2):62-73. PubMed ID: 29446235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.