These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 21782790)

  • 21. Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene.
    Van Way SM; Hosking ER; Braun TF; Manson MD
    J Mol Biol; 2000 Mar; 297(1):7-24. PubMed ID: 10704303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion.
    Heinemann IU; Rovner AJ; Aerni HR; Rogulina S; Cheng L; Olds W; Fischer JT; Söll D; Isaacs FJ; Rinehart J
    FEBS Lett; 2012 Oct; 586(20):3716-22. PubMed ID: 22982858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes.
    Delgado-Olivares L; Zamora-Romo E; Guarneros G; Hernandez-Sanchez J
    Biochimie; 2006 Jul; 88(7):793-800. PubMed ID: 16488066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of translational machinery: could translation termination come into being before elongation?
    Hauryliuk V
    J Theor Biol; 2007 Oct; 248(3):574-8. PubMed ID: 17624369
    [No Abstract]   [Full Text] [Related]  

  • 25. Decoding the translational termination signal: the polypeptide chain release factor in Escherichia coli crosslinks to the base following the stop codon.
    Poole ES; Brimacombe R; Tate WP
    RNA; 1997 Sep; 3(9):974-82. PubMed ID: 9292497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Release factor one is nonessential in Escherichia coli.
    Johnson DB; Wang C; Xu J; Schultz MD; Schmitz RJ; Ecker JR; Wang L
    ACS Chem Biol; 2012 Aug; 7(8):1337-44. PubMed ID: 22662873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the optimality of the genetic code, with the consideration of termination codons.
    Goodarzi H; Nejad HA; Torabi N
    Biosystems; 2004 Nov; 77(1-3):163-73. PubMed ID: 15527955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A tripeptide 'anticodon' deciphers stop codons in messenger RNA.
    Ito K; Uno M; Nakamura Y
    Nature; 2000 Feb; 403(6770):680-4. PubMed ID: 10688208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A bacterial strain with a unique quadruplet codon specifying non-native amino acids.
    Chatterjee A; Lajoie MJ; Xiao H; Church GM; Schultz PG
    Chembiochem; 2014 Aug; 15(12):1782-6. PubMed ID: 24867343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three, four or more: the translational stop signal at length.
    Tate WP; Mannering SA
    Mol Microbiol; 1996 Jul; 21(2):213-9. PubMed ID: 8858577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative evaluation of two cell-free protein synthesis systems derived from Escherichia coli for genetic code reprogramming.
    Lee KB; Kim HC; Kim DM; Kang TJ; Suga H
    J Biotechnol; 2012 Dec; 164(2):330-5. PubMed ID: 23395618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sense codon reassignment enables viral resistance and encoded polymer synthesis.
    Robertson WE; Funke LFH; de la Torre D; Fredens J; Elliott TS; Spinck M; Christova Y; Cervettini D; Böge FL; Liu KC; Buse S; Maslen S; Salmond GPC; Chin JW
    Science; 2021 Jun; 372(6546):1057-1062. PubMed ID: 34083482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites.
    Johnson DB; Xu J; Shen Z; Takimoto JK; Schultz MD; Schmitz RJ; Xiang Z; Ecker JR; Briggs SP; Wang L
    Nat Chem Biol; 2011 Sep; 7(11):779-86. PubMed ID: 21926996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppression of temperature-sensitive defects of polypeptide release factors RF-1 and RF-2 by mutations or by an excess of RF-3 in Escherichia coli.
    Matsumura K; Ito K; Kawazu Y; Mikuni O; Nakamura Y
    J Mol Biol; 1996 May; 258(4):588-99. PubMed ID: 8636994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli.
    Huang Y; Russell WK; Wan W; Pai PJ; Russell DH; Liu W
    Mol Biosyst; 2010 Apr; 6(4):683-6. PubMed ID: 20237646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-frame amber stop codon replacement mutagenesis for the directed evolution of proteins containing non-canonical amino acids: identification of residues open to bio-orthogonal modification.
    Arpino JA; Baldwin AJ; McGarrity AR; Tippmann EM; Jones DD
    PLoS One; 2015; 10(5):e0127504. PubMed ID: 26011713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Only the last amino acids in the nascent peptide influence translation termination in Escherichia coli genes.
    Mottagui-Tabar S; Isaksson LA
    FEBS Lett; 1997 Sep; 414(1):165-70. PubMed ID: 9305752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Non-canonical decoding events at stop codons in eukaryotes].
    Doronina VA; Brown JD
    Mol Biol (Mosk); 2006; 40(4):731-41. PubMed ID: 16913232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo contextual requirements for UAG translation as pyrrolysine.
    Longstaff DG; Blight SK; Zhang L; Green-Church KB; Krzycki JA
    Mol Microbiol; 2007 Jan; 63(1):229-41. PubMed ID: 17140411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular recognition and catalysis in translation termination complexes.
    Klaholz BP
    Trends Biochem Sci; 2011 May; 36(5):282-92. PubMed ID: 21420300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.