BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21782915)

  • 1. A segmentation method to obtain a complete geometry model of the hearing organ.
    Poznyakovskiy AA; Zahnert T; Kalaidzidis Y; Lazurashvili N; Schmidt R; Hardtke HJ; Fischer B; Yarin YM
    Hear Res; 2011 Dec; 282(1-2):25-34. PubMed ID: 21782915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data.
    Poznyakovskiy AA; Zahnert T; Kalaidzidis Y; Schmidt R; Fischer B; Baumgart J; Yarin YM
    Hear Res; 2008 Sep; 243(1-2):95-104. PubMed ID: 18625296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations.
    Braun K; Böhnke F; Stark T
    Acta Otolaryngol; 2012 Jun; 132(6):603-13. PubMed ID: 22384791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed 3D model of the guinea pig cochlea.
    Liu B; Gao XL; Yin HX; Luo SQ; Lu J
    Brain Struct Funct; 2007 Sep; 212(2):223-30. PubMed ID: 17717692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images.
    Mahfouz MR; Hoff WA; Komistek RD; Dennis DA
    J Biomech; 2005 Feb; 38(2):229-39. PubMed ID: 15598449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans.
    del Fresno M; Vénere M; Clausse A
    Comput Med Imaging Graph; 2009 Jul; 33(5):369-76. PubMed ID: 19346100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional modeling of the cochlea by use of an arc fitting approach.
    Schurzig D; Lexow GJ; Majdani O; Lenarz T; Rau TS
    Comput Methods Biomech Biomed Engin; 2016 Dec; 19(16):1785-1799. PubMed ID: 27685195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Narrow-band level set and visualization technology for cochlea segmentation].
    Diao X; Chen S; Liang C; Wu P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1161-6. PubMed ID: 18027718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model.
    Plontke SK; Siedow N; Wegener R; Zenner HP; Salt AN
    Audiol Neurootol; 2007; 12(1):37-48. PubMed ID: 17119332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmenting the prostate and rectum in CT imagery using anatomical constraints.
    Chen S; Lovelock DM; Radke RJ
    Med Image Anal; 2011 Feb; 15(1):1-11. PubMed ID: 20634121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Registration of micro-computed tomography and histological images of the guinea pig cochlea to construct an ear model using an iterative closest point algorithm.
    Lee CF; Li GJ; Wan SY; Lee WJ; Tzen KY; Chen CH; Song YL; Chou YF; Chen YS; Liu TC
    Ann Biomed Eng; 2010 May; 38(5):1719-27. PubMed ID: 20162353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer system for definition of the quantitative geometry of musculature from CT images.
    Daniel M; Iglic A; Kralj-Iglic V; Konvicková S
    Comput Methods Biomech Biomed Engin; 2005 Feb; 8(1):25-9. PubMed ID: 16154867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G
    Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Pura JA; Summers RM
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):1001-8. PubMed ID: 20426209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of bone segmentation and improved 3-D registration using contour coherency in CT data.
    Wang LI; Greenspan M; Ellis R
    IEEE Trans Med Imaging; 2006 Mar; 25(3):324-34. PubMed ID: 16524088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA.
    Schaap M; van Walsum T; Neefjes L; Metz C; Capuano E; de Bruijne M; Niessen W
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1974-86. PubMed ID: 21708497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pSnakes: a new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images.
    de Alexandria AR; Cortez PC; Bessa JA; da Silva Félix JH; de Abreu JS; de Albuquerque VH
    Comput Methods Programs Biomed; 2014 Oct; 116(3):260-73. PubMed ID: 24957548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiautomatic segmentation of the cochlea using real-time volume rendering and regional adaptive snake modeling.
    Yoo KS; Wang G; Rubinstein JT; Vannier MW
    J Digit Imaging; 2001 Dec; 14(4):173-81. PubMed ID: 11894889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Micro-CT imaging of guinea pig cochlear].
    Sun CC; Jiang ZD; Zhang K
    Zhonghua Yi Xue Za Zhi; 2012 Dec; 92(48):3442-4. PubMed ID: 23327709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.