BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 21782935)

  • 1. Lipid peroxidation and neurodegenerative disease.
    Reed TT
    Free Radic Biol Med; 2011 Oct; 51(7):1302-19. PubMed ID: 21782935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies.
    Perluigi M; Coccia R; Butterfield DA
    Antioxid Redox Signal; 2012 Dec; 17(11):1590-609. PubMed ID: 22114878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The present-day look at lipid peroxidation].
    Luczaj W; Skrzydlewska E
    Postepy Biochem; 2006; 52(2):173-9. PubMed ID: 17078507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases.
    Miller E; Morel A; Saso L; Saluk J
    Oxid Med Cell Longev; 2014; 2014():572491. PubMed ID: 24868314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria.
    Xiao M; Zhong H; Xia L; Tao Y; Yin H
    Free Radic Biol Med; 2017 Oct; 111():316-327. PubMed ID: 28456642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine.
    Silva-Adaya D; Pérez-De La Cruz V; Herrera-Mundo MN; Mendoza-Macedo K; Villeda-Hernández J; Binienda Z; Ali SF; Santamaría A
    J Neurochem; 2008 May; 105(3):677-89. PubMed ID: 18194214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.
    Vigor C; Bertrand-Michel J; Pinot E; Oger C; Vercauteren J; Le Faouder P; Galano JM; Lee JC; Durand T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 964():65-78. PubMed ID: 24856297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of polyunsaturated fatty acids and lipid peroxidation on colorectal cancer risk and treatments.
    Cai F; Dupertuis YM; Pichard C
    Curr Opin Clin Nutr Metab Care; 2012 Mar; 15(2):99-106. PubMed ID: 22234166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases.
    Zarkovic K; Jakovcevic A; Zarkovic N
    Free Radic Biol Med; 2017 Oct; 111():110-126. PubMed ID: 27993730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria.
    Zhong H; Yin H
    Redox Biol; 2015; 4():193-9. PubMed ID: 25598486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shortage of lipid-radical cycles in membranes as a possible prime cause of energetic failure in aging and Alzheimer disease.
    Dmitriev LF
    Neurochem Res; 2007 Aug; 32(8):1278-91. PubMed ID: 17541743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid peroxidation associated cardiolipin loss and membrane depolarization in rat brain mitochondria.
    Sen T; Sen N; Tripathi G; Chatterjee U; Chakrabarti S
    Neurochem Int; 2006 Jul; 49(1):20-7. PubMed ID: 16510213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.
    Catalá A
    Chem Phys Lipids; 2009 Jan; 157(1):1-11. PubMed ID: 18977338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress and neurodegeneration: where are we now?
    Halliwell B
    J Neurochem; 2006 Jun; 97(6):1634-58. PubMed ID: 16805774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal characterization of mitochondrial bioenergetics after spinal cord injury.
    Sullivan PG; Krishnamurthy S; Patel SP; Pandya JD; Rabchevsky AG
    J Neurotrauma; 2007 Jun; 24(6):991-9. PubMed ID: 17600515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope-reinforced polyunsaturated fatty acids protect mitochondria from oxidative stress.
    Andreyev AY; Tsui HS; Milne GL; Shmanai VV; Bekish AV; Fomich MA; Pham MN; Nong Y; Murphy AN; Clarke CF; Shchepinov MS
    Free Radic Biol Med; 2015 May; 82():63-72. PubMed ID: 25578654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae strain expressing a plant fatty acid desaturase produces polyunsaturated fatty acids and is susceptible to oxidative stress induced by lipid peroxidation.
    Cipak A; Hasslacher M; Tehlivets O; Collinson EJ; Zivkovic M; Matijevic T; Wonisch W; Waeg G; Dawes IW; Zarkovic N; Kohlwein SD
    Free Radic Biol Med; 2006 Mar; 40(5):897-906. PubMed ID: 16520241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radicals and aging.
    Barja G
    Trends Neurosci; 2004 Oct; 27(10):595-600. PubMed ID: 15374670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process.
    Perluigi M; Di Domenico F; Giorgi A; Schininà ME; Coccia R; Cini C; Bellia F; Cambria MT; Cornelius C; Butterfield DA; Calabrese V
    J Neurosci Res; 2010 Dec; 88(16):3498-507. PubMed ID: 20936692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.