These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21783104)

  • 1. Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model.
    Luo Q; Nakade R; Dong X; Rong Q; Wang X
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):943-52. PubMed ID: 21783104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of water and mineral-collagen interfacial bonding on microdamage progression in bone.
    Luo Q; Leng H; Wang X; Zhou Y; Rong Q
    J Orthop Res; 2014 Feb; 32(2):217-23. PubMed ID: 24122969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.
    Dong XN; Guda T; Millwater HR; Wang X
    J Biomech; 2009 Feb; 42(3):202-9. PubMed ID: 19058806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach.
    Maghsoudi-Ganjeh M; Lin L; Wang X; Zeng X
    Biomech Model Mechanobiol; 2019 Apr; 18(2):463-478. PubMed ID: 30470944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational investigation of the effect of water on the nanomechanical behavior of bone.
    Maghsoudi-Ganjeh M; Wang X; Zeng X
    J Mech Behav Biomed Mater; 2020 Jan; 101():103454. PubMed ID: 31586882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method.
    Atthapreyangkul A; Hoffman M; Pearce G; Standard O
    J Mech Behav Biomed Mater; 2023 Feb; 138():105578. PubMed ID: 36427415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of microdamage formation using a mineral-collagen composite model of bone.
    Wang X; Qian C
    J Biomech; 2006; 39(4):595-602. PubMed ID: 16439230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone.
    Garnero P; Borel O; Gineyts E; Duboeuf F; Solberg H; Bouxsein ML; Christiansen C; Delmas PD
    Bone; 2006 Mar; 38(3):300-9. PubMed ID: 16271523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.
    Fritsch A; Hellmich C; Dormieux L
    J Theor Biol; 2009 Sep; 260(2):230-52. PubMed ID: 19497330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale finite element investigation on the role of intra- and extra-fibrillar mineralisation on the elastic properties of bone tissue.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2022 May; 129():105139. PubMed ID: 35248874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Stiffness and Strength of Bone at Nanoscale.
    Abueidda DW; Sabet FA; Jasiuk IM
    J Biomech Eng; 2017 May; 139(5):. PubMed ID: 28334367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone.
    Yeh OC; Keaveny TM
    J Orthop Res; 2001 Nov; 19(6):1001-7. PubMed ID: 11780997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.