These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21783106)

  • 41. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.
    Hosseinzadeh M; Ghoreishi M; Narooei K
    J Mech Behav Biomed Mater; 2016 Jun; 59():393-403. PubMed ID: 26953961
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone.
    Cornu O; Boquet J; Nonclercq O; Docquier PL; Van Tomme J; Delloye C; Banse X
    Cell Tissue Bank; 2011 Nov; 12(4):281-8. PubMed ID: 20703816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Viscoelastic behaviour and failure of bovine cancellous bone under constant strain rate.
    Guedes RM; Simões JA; Morais JL
    J Biomech; 2006; 39(1):49-60. PubMed ID: 16271587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The use of fractography to supplement analysis of bone mechanical properties in different strains of mice.
    Wise LM; Wang Z; Grynpas MD
    Bone; 2007 Oct; 41(4):620-30. PubMed ID: 17690026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High strain rate response of rabbit femur bones.
    Shunmugasamy VC; Gupta N; Coelho PG
    J Biomech; 2010 Nov; 43(15):3044-50. PubMed ID: 20673668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compressive properties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite.
    Orr TE; Villars PA; Mitchell SL; Hsu HP; Spector M
    Biomaterials; 2001 Jul; 22(14):1953-9. PubMed ID: 11426873
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D analysis from micro-MRI during in situ compression on cancellous bone.
    Benoit A; Guérard S; Gillet B; Guillot G; Hild F; Mitton D; Périé JN; Roux S
    J Biomech; 2009 Oct; 42(14):2381-6. PubMed ID: 19643419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomechanical analysis of allograft bone treated with a novel tissue sterilization process.
    Mroz TE; Lin EL; Summit MC; Bianchi JR; Keesling JE; Roberts M; Vangsness CT; Wang JC
    Spine J; 2006; 6(1):34-9. PubMed ID: 16413445
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of high-energy X-ray doses on bone elastic properties and residual strains.
    Singhal A; Deymier-Black AC; Almer JD; Dunand DC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1774-86. PubMed ID: 22098877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of water on nanomechanics of bone is different between tension and compression.
    Samuel J; Park JS; Almer J; Wang X
    J Mech Behav Biomed Mater; 2016 Apr; 57():128-38. PubMed ID: 26710258
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanostructural alteration in bone quantified in terms of orientation distribution of mineral crystals: a possible tool for fracture risk assessment.
    Giri B; Tadano S
    J Biomech Eng; 2011 Dec; 133(12):124503. PubMed ID: 22206430
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone.
    Yamada S; Tadano S; Fukasawa K
    J Biomech; 2016 Dec; 49(16):4124-4127. PubMed ID: 27793405
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of compressive failure process of cortical bone materials using damage-based model.
    Ng TP; R Koloor SS; Djuansjah JRP; Abdul Kadir MR
    J Mech Behav Biomed Mater; 2017 Feb; 66():1-11. PubMed ID: 27825047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler.
    Zioupos P; Wang XT; Currey JD
    J Biomech; 1996 Aug; 29(8):989-1002. PubMed ID: 8817365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stress-whitening occurs in demineralized bone.
    Hardisty MR; Garcia TC; Choy S; Dahmubed J; Stover SM; Fyhrie DP
    Bone; 2013 Dec; 57(2):367-74. PubMed ID: 24055642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.
    Trębacz H; Zdunek A; Wlizło-Dyś E; Cybulska J; Pieczywek P
    J Appl Biomater Funct Mater; 2015 Oct; 13(3):e220-7. PubMed ID: 26391867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changing the structurally effective mineral content of bone with in vitro fluoride treatment.
    DePaula CA; Abjornson C; Pan Y; Kotha SP; Koike K; Guzelsu N
    J Biomech; 2002 Mar; 35(3):355-61. PubMed ID: 11858811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From Tension to Compression: Asymmetric Mechanical Behaviour of Trabecular Bone's Organic Phase.
    Xie S; Wallace RJ; Callanan A; Pankaj P
    Ann Biomed Eng; 2018 Jun; 46(6):801-809. PubMed ID: 29589168
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression.
    Trębacz H; Zdunek A; Cybulska J; Pieczywek P
    Australas Phys Eng Sci Med; 2013 Mar; 36(1):43-54. PubMed ID: 23393006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.