These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21783106)

  • 61. Micro-structure and mechanical properties of the turtle carapace as a biological composite shield.
    Achrai B; Wagner HD
    Acta Biomater; 2013 Apr; 9(4):5890-902. PubMed ID: 23271040
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Variability in the elastic properties of bovine dentin at multiple length scales.
    Deymier-Black AC; Almer JD; Stock SR; Dunand DC
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):71-81. PubMed ID: 22100081
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An overview on bone protein extract as the new generation of demineralized bone matrix.
    Zhou Z; Zou L; Li H; Bünger C; Zou X
    Sci China Life Sci; 2012 Dec; 55(12):1045-56. PubMed ID: 23233219
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Extracellular bone matrix exhibits hardening elastoplasticity and more than double cortical strength: Evidence from homogeneous compression of non-tapered single micron-sized pillars welded to a rigid substrate.
    Luczynski KW; Steiger-Thirsfeld A; Bernardi J; Eberhardsteiner J; Hellmich C
    J Mech Behav Biomed Mater; 2015 Dec; 52():51-62. PubMed ID: 25842157
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Haversian microstructure in bovine femoral cortices: An adaptation for improved compressive strength.
    Mayya A; Banerjee A; Rajesh R
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():454-463. PubMed ID: 26652396
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Relations between age, mineral density and mechanical properties of human femoral compacta.
    Smith CB; Smith DA
    Acta Orthop Scand; 1976 Oct; 47(5):496-502. PubMed ID: 998184
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone.
    Schwiedrzik J; Raghavan R; Bürki A; LeNader V; Wolfram U; Michler J; Zysset P
    Nat Mater; 2014 Jul; 13(7):740-7. PubMed ID: 24907926
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Separating the influence of the cortex and foam on the mechanical properties of porcupine quills.
    Yang W; McKittrick J
    Acta Biomater; 2013 Nov; 9(11):9065-74. PubMed ID: 23872514
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The bony horncore of the common eland (Taurotragus oryx): composition and mechanical properties of a spiral fighting structure.
    Cappelli J; García AJ; Kotrba R; Gambín Pozo P; Landete-Castillejos T; Gallego L; Ceacero F
    J Anat; 2018 Jan; 232(1):72-79. PubMed ID: 29023690
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Is there a relation between bone strength and percolation?
    Sasaki N; Yamamura H; Matsushima N
    J Theor Biol; 1986 Sep; 122(1):25-31. PubMed ID: 3796007
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Links between microstructural properties of cancellous bone and its mechanical response to different strain rates.
    Prot M; Saletti D; Pattofatto S; Bousson V; Laporte S
    Comput Methods Biomech Biomed Engin; 2012; 15 Suppl 1():291-2. PubMed ID: 23009513
    [No Abstract]   [Full Text] [Related]  

  • 72. Mechanical properties and failure deformation mechanisms of yak horn under quasi-static compression and dynamic impact.
    Liu S; Xu S; Song J; Zhou J; Xu L; Li X; Zou M
    J Mech Behav Biomed Mater; 2020 Jul; 107():103753. PubMed ID: 32364949
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The effects of strain rate, reconstruction and mineral content on some mechanical properties of bovine bone.
    Currey JD
    J Biomech; 1975 Jan; 8(1):81-6. PubMed ID: 1126977
    [No Abstract]   [Full Text] [Related]  

  • 74. Axial compression of a hollow cylinder filled with foam: a study of porcupine quills.
    Yang W; Chao C; McKittrick J
    Acta Biomater; 2013 Feb; 9(2):5297-304. PubMed ID: 22982420
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Design and implementation of a novel mechanical testing system for cellular solids.
    Nazarian A; Stauber M; Müller R
    J Biomed Mater Res B Appl Biomater; 2005 May; 73(2):400-11. PubMed ID: 15682380
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part III: material and mechanical properties of fresh and processed bovine cancellous bone.
    Anderson IA; Mucalo MR; Johnson GS; Lorier MA
    J Mater Sci Mater Med; 2000 Nov; 11(11):743-9. PubMed ID: 15348080
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evaluation of the elastic modulus of cortical bone: adaptation of experimental protocols to small samples.
    Lefèvre E; Baron C; Pithioux M
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():328-9. PubMed ID: 23923961
    [No Abstract]   [Full Text] [Related]  

  • 78. Characterization of Ultralow Density Cellular Solids: Lessons from 30 years of Bone Biomechanics Research.
    Sacher S; Hernandez CJ; Donnelly E
    Adv Eng Mater; 2021 Jul; 23(7):. PubMed ID: 34456625
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Corrigendum to"Effects of compatibility of deproteinized antler cancellous bone with various bioactive factors on their osteogenic potential" [Biomaterials 34 (2013) 9103-9114].
    Zhang X; Xu M; Song L; Wei Y; Lin Y; Liu W; Heng BC; Peng H; Wang Y; Deng X
    Biomaterials; 2018 Jul; 170():136. PubMed ID: 29665502
    [No Abstract]   [Full Text] [Related]  

  • 80. Elasticity and material anisotropy of lamellar cortical bone in adult bovine tibia characterized via AFM nanoindentation.
    Cisneros T; Sevostianov I; Drach B
    J Mech Behav Biomed Mater; 2023 Aug; 144():105992. PubMed ID: 37393887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.