These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 21783116)

  • 1. Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates.
    Prabhu R; Horstemeyer MF; Tucker MT; Marin EB; Bouvard JL; Sherburn JA; Liao J; Williams LN
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1067-80. PubMed ID: 21783116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.
    Trexler MM; Lennon AM; Wickwire AC; Harrigan TP; Luong QT; Graham JL; Maisano AJ; Roberts JC; Merkle AC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1920-8. PubMed ID: 22098890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.
    Prabhu R; Whittington WR; Patnaik SS; Mao Y; Begonia MT; Williams LN; Liao J; Horstemeyer MF
    J Vis Exp; 2015 May; (99):e51545. PubMed ID: 26067742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic and quasi-static compressive response of porcine muscle.
    Song B; Chen W; Ge Y; Weerasooriya T
    J Biomech; 2007; 40(13):2999-3005. PubMed ID: 17448479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of tissue preservation temperature on high strain-rate material properties of brain.
    Zhang J; Yoganandan N; Pintar FA; Guan Y; Shender B; Paskoff G; Laud P
    J Biomech; 2011 Feb; 44(3):391-6. PubMed ID: 21055756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertia effects on characterization of dynamic response of brain tissue.
    Sanborn B; Nie X; Chen W; Weerasooriya T
    J Biomech; 2012 Feb; 45(3):434-9. PubMed ID: 22226509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus.
    Van Sligtenhorst C; Cronin DS; Wayne Brodland G
    J Biomech; 2006; 39(10):1852-8. PubMed ID: 16055133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic constitutive equations and experimental tensile behavior of brain tissue.
    Velardi F; Fraternali F; Angelillo M
    Biomech Model Mechanobiol; 2006 Mar; 5(1):53-61. PubMed ID: 16315049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of brain tissue in simple shear at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2013 Dec; 28():71-85. PubMed ID: 23973615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive skeletal muscle response to impact loading: experimental testing and inverse modelling.
    Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Nov; 27():214-25. PubMed ID: 23707599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone.
    Tüfekci K; Kayacan R; Kurbanoğlu C
    J Mech Behav Biomed Mater; 2014 Jun; 34():231-42. PubMed ID: 24607761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified Bilston nonlinear viscoelastic model for finite element head injury studies.
    Shen F; Tay TE; Li JZ; Nigen S; Lee PV; Chan HK
    J Biomech Eng; 2006 Oct; 128(5):797-801. PubMed ID: 16995770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem.
    Javid S; Rezaei A; Karami G
    J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of friction coefficient in unconfined compression of brain tissue.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Oct; 14():163-71. PubMed ID: 23026694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cyclic strain on the mechanical behavior of virgin ultra-high molecular weight polyethylene.
    Avanzini A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1242-56. PubMed ID: 21783133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.