These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21783119)

  • 1. Modeling shear behavior of the annulus fibrosus.
    Hollingsworth NT; Wagner DR
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1103-14. PubMed ID: 21783119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.
    Guerin HL; Elliott DM
    J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
    Caner FC; Guo Z; Moran B; Bazant ZP; Carol I
    J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus.
    Wagner DR; Lotz JC
    J Orthop Res; 2004 Jul; 22(4):901-9. PubMed ID: 15183453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear mechanical properties of human lumbar annulus fibrosus.
    Iatridis JC; Kumar S; Foster RJ; Weidenbaum M; Mow VC
    J Orthop Res; 1999 Sep; 17(5):732-7. PubMed ID: 10569484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions.
    Wagner DR; Reiser KM; Lotz JC
    J Biomech; 2006; 39(6):1021-9. PubMed ID: 15878594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The micromechanical role of the annulus fibrosus components under physiological loading of the lumbar spine.
    Ayturk UM; Garcia JJ; Puttlitz CM
    J Biomech Eng; 2010 Jun; 132(6):061007. PubMed ID: 20887032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stress and strain states of the posterior annulus under flexion.
    Hollingsworth NT; Wagner DR
    Spine (Phila Pa 1976); 2012 Aug; 37(18):E1134-9. PubMed ID: 22543250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A homogenization model of the annulus fibrosus.
    Yin L; Elliott DM
    J Biomech; 2005 Aug; 38(8):1674-84. PubMed ID: 15958225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and model determination of human intervertebral disc osmoviscoelasticity.
    Schroeder Y; Elliott DM; Wilson W; Baaijens FP; Huyghe JM
    J Orthop Res; 2008 Aug; 26(8):1141-6. PubMed ID: 18327799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load.
    Guerin HA; Elliott DM
    J Biomech; 2006; 39(8):1410-8. PubMed ID: 15950233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration.
    O'Connell GD; Guerin HL; Elliott DM
    J Biomech Eng; 2009 Nov; 131(11):111007. PubMed ID: 20353258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.
    Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P
    J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration.
    O'Connell GD; Sen S; Elliott DM
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):493-503. PubMed ID: 21748426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation.
    Ambard D; Cherblanc F
    Ann Biomed Eng; 2009 Nov; 37(11):2256-65. PubMed ID: 19609835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent.
    Fujita Y; Duncan NA; Lotz JC
    J Orthop Res; 1997 Nov; 15(6):814-9. PubMed ID: 9497805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs.
    Chuang SY; Odono RM; Hedman TP
    Clin Biomech (Bristol); 2007 Jan; 22(1):14-20. PubMed ID: 17005305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single lamellar mechanics of the human lumbar anulus fibrosus.
    Holzapfel GA; Schulze-Bauer CA; Feigl G; Regitnig P
    Biomech Model Mechanobiol; 2005 Mar; 3(3):125-40. PubMed ID: 15778871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An examination of the influence of strain rate on subfailure mechanical properties of the annulus fibrosus.
    Gregory DE; Callaghan JP
    J Biomech Eng; 2010 Sep; 132(9):091010. PubMed ID: 20815644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.