These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21783153)

  • 1. Impact of thermomechanical texture on the superelastic response of Nitinol implants.
    Barney MM; Xu D; Robertson SW; Schroeder V; Ritchie RO; Pelton AR; Mehta A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1431-9. PubMed ID: 21783153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of crystallographic texture on stress-induced martensitic transformation in NiTi: A computational analysis.
    Weafer FM; Guo Y; Bruzzi MS
    J Mech Behav Biomed Mater; 2016 Jan; 53():210-217. PubMed ID: 26334356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents.
    Robertson SW; Imbeni V; Wenk HR; Ritchie RO
    J Biomed Mater Res A; 2005 Feb; 72(2):190-9. PubMed ID: 15625682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of a Nb/NiTi superelastic composite with high critical stress for inducing martensitic transformation and large recoverable strain for biomedical applications.
    Guo S; Shi Y; Zhang H; Meng Q; Su R; Zhang J; Liu G; Cheng X; Zhao X
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110894. PubMed ID: 32409049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.
    Yamanaka K; Mori M; Koizumi Y; Chiba A
    J Mech Behav Biomed Mater; 2014 Apr; 32():52-61. PubMed ID: 24412717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy.
    Elmay W; Prima F; Gloriant T; Bolle B; Zhong Y; Patoor E; Laheurte P
    J Mech Behav Biomed Mater; 2013 Feb; 18():47-56. PubMed ID: 23246554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys.
    Shabalovskaya SA
    Biomed Mater Eng; 1996; 6(4):267-89. PubMed ID: 8980835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys.
    Ijaz MF; Kim HY; Hosoda H; Miyazaki S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube.
    Robertson SW; Ritchie RO
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):26-33. PubMed ID: 17477387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.
    Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W
    J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material.
    McKelvey AL; Ritchie RO
    J Biomed Mater Res; 1999 Dec; 47(3):301-8. PubMed ID: 10487880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments.
    Shen Y; Zhou HM; Zheng YF; Campbell L; Peng B; Haapasalo M
    J Endod; 2011 Nov; 37(11):1566-71. PubMed ID: 22000465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures.
    Pun DK; Berzins DW
    Dent Mater; 2008 Feb; 24(2):221-7. PubMed ID: 17624421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue of Nitinol: The state-of-the-art and ongoing challenges.
    Mahtabi MJ; Shamsaei N; Mitchell MR
    J Mech Behav Biomed Mater; 2015 Oct; 50():228-54. PubMed ID: 26160028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A comparison of archwires of memory alloys Nitinol, NiTi Ormco and Tru-chrome which were subjected to edgewise torsion of 20 degrees, 25 degrees, 30 degrees and 35 degrees and a temperature of 37 degrees Celsius].
    Filleul MP
    Orthod Fr; 1989; 60 Pt 2():851-60. PubMed ID: 2490262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative materials: the NiTi alloys in orthodontics.
    Airoldi G; Riva G
    Biomed Mater Eng; 1996; 6(4):299-305. PubMed ID: 8980837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Ni-free superelastic alloy for orthodontic applications.
    Arciniegas M; Manero JM; Espinar E; Llamas JM; Barrera JM; Gil FJ
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3325-8. PubMed ID: 23706217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.
    Brantley WA; Guo W; Clark WA; Iijima M
    Dent Mater; 2008 Feb; 24(2):204-10. PubMed ID: 17561249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.